IUPUI Bulletins »
Schools »
purdue-science »
Courses »
Biology
Courses
Biology
Undergraduate Level
- BIOL-K 101 Concepts of Biology I (5 cr.) P: High school or college chemistry and math placement at MATH 15300 or higher. An introductory course emphasizing the principles of cellular biology; molecular biology; genetics; and plant anatomy, diversity, development, and physiology. Fall, Spring, Summer.
- BIOL-K 102 Honors Concepts of Biology I (5 cr.) P: High school or college chemistry and math placement at MATH 15300 or higher. For Honors Credit: Fall. An introductory course emphasizing the principles of cellular biology; molecular biology; genetics; and plant anatomy, diversity, development, and physiology. Faculty-supervised research projects and approved independent projects provide greater depth for honors students. This course carries honors credit.
- BIOL-K 103 Concepts of Biology II (5 cr.) P: BIOL-K 101. An introductory biology course emphasizing phylogeny, structure, physiology, development, diversity, evolution and behavior in animals. Fall, Spring, Summer.
- BIOL-K 104 Honors Concepts of Biology II (5 cr.) P: BIOL-K 101 and accepted into honors program or BIOL-K 102. An introductory biology course emphasizing phylogeny, structure, physiology, development, diversity, evolution and behavior in animals. This course will expose honors students to a unique series of laboratory investigations. Spring.
- BIOL-K 195 Introductory Topics in Biology (0-3 cr.) P: Freshman or sophomore standing or consent of instructor. Other prerequisites may be announced at the time of topic offering. Lectures on contemporary issues in biology. This course may also include reading assignments and special projects. Fall, Spring, Summer.
- BIOL-K 295 Intermediate Topics in Biology (0-3 cr.) P: P: Freshman or sophomore standing; other prerequisites may be announced at the time of topic offering. Lectures on contemporary issues in biology. This course may also include reading assignments and special projects. Yes.
- BIOL-K 322 Genetics and Molecular Biology (3 cr.) P: BIOL-K 103 and CHEM-C 106. The course covers the principles of classical and molecular genetics including Mendelian inheritance, linkage, nucleic acids, gene expression, recombinant DNA, genomics, immunogenetics, and regulation. Fall, Spring of even-numbered years.
- BIOL-K 323 Genetics and Molecular Biology Laboratory (2 cr.) P: or C: BIOL-K 322. Applied principles of genetics and molecular biology using organisms of increasing complexity from viruses to fruit fly. Laboratory experiments include linkage analyses, deletion mapping, isolation of human chromosomes, mutagenesis, DNA extraction, restriction enzyme analysis, and PCR. Fall.
- BIOL-K 324 Cell Biology (3 cr.) P: BIOL-K 103 and CHEM-C 106. Examination of the structure and activity of eukaryotic cells and subcellular structures. Emphasis is on regulation of and interactions among subcellular events, such as protein targeting, transmembrane signaling, cell movement, and cell cycle. Spring.
- BIOL-K 325 Cell Biology Laboratory (2 cr.) P: or C: BIOL-K 324. Experiments on the molecular and biochemical basis of organization and function of eukaryotic cells. Spring.
- BIOL-K 331 Developmental Biology (3 cr.) P: BIOL-K 103 and BIOL-K 322. Fall, Spring. The development of animal embryos from fertilization through organogenesis and some non-embryonic developmental phenomena.
- BIOL-K 333 Developmental Biology Laboratory (2 cr.) P: or C: BIOL-K 331. Spring. A series of original and embryonic chick cell tissue-based experiments will be performed. These experiments will illustrate mechanisms of animal development.
- BIOL-K 338 Introductory Immunology (3 cr.) P: BIOL-K 103, BIOL-K 322, BIOL-K 324, and CHEM-C 106. Principles of basic immunology with an emphasis on the cells and molecules underlying immunological mechanisms. Fall, Spring, Summer.
- BIOL-K 339 Immunology Laboratory (2 cr.) P: or C: BIOL-K 338. Demonstration of immunological principles by experimentation. Exercises include cells and factors of the innate and the adaptive immune systems. Fall, Spring.
- BIOL-K 341 Principles of Ecology and Evolution (3 cr.) P: BIOL-K 103. A study of the interactions of organisms with one another and with their nonbiotic environments in light of evolution. Fall, Spring.
- BIOL-K 342 Principles of Ecology and Evolution Laboratory (2 cr.) P: or C: BIOL-K 341. Application of ecology and evolution principles in laboratory and field experiments as well as demonstration of techniques of general ecology. Fall.
- BIOL-K 350 Comparative Animal Physiology (3 cr.) P: BIOL-K103 and CHEM-C106 Fall. A comparative examination of principles of animal physiology from molecular to organismal levels using homeostasis, regulation, and adaptation as central themes.
- BIOL-K 356 Microbiology (3 cr.) P: BIOL-K 103, CHEM-C 341. Introduction to microorganisms: cytology, nutrition, physiology, and genetics. Importance of microorganisms in applied fields including infectious disease. Fall, Spring.
- BIOL-K 357 Microbiology Laboratory (2 cr.) P: or C: BIOL-K 356. Laboratory experiments and demonstrations to yield proficiency in aseptic cultivation and utilization of microorganisms; experimental investigations of biological principles in relation to microorganisms. Fall, Spring.
- BIOL-K 384 Biochemistry (3 cr.) P: BIOL-K 101 or equivalent recommended; P or C: CHEM-C 342 or equivalent. Biochemistry covering the fundamentals of the chemistry of life including biomolecule structure and function, the dependence of biological processes on chemical and physical principles, and pathways of carbohydrate and fatty acid metabolism. Recommended for pre-professional students. Prerequisite for advanced level courses in the Departments of Biology and Chemistry and Chemical Biology. Fall, Spring, Summer.
- BIOL-K 395 Advanced Topics in Biology (1-3 cr.) P: Junior or senior standing or consent of instructor; other prerequisites may be announced at the time of topic offering. Lectures on contemporary issues in biology. This course may also include reading assignments and special projects. Fall, Spring, Summer.
- BIOL-K 411 Global Change Biology (3 cr.) P: BIOL-K 101 and BIOL-K 103 or GEOL-G 109 and one course in chemistry or consent of instructor. Examination of changes in earth's environment over history. In-depth study of effects of environmental change, including global warming, on the ecology of various organisms. Spring of odd-numbered years.
- BIOL-K 416 Cellular Molecular Neuroscience (3 cr.) P: BIOL-K 324. This course is designed to provide an in-depth analysis of topics within the field cellular and molecular neuroscience. It will cover invertebrate and vertebrate neurobiology, cell and molecular biology of the neuron, neurophysiology, neuroanatomy, developmental neurobiology, regeneration and degeneration, learning and memory, and will include comparisons of neural mechanisms throughout the animal kingdom. Fall.
- BIOL-K 451 Neuropharmacology (3 cr.) P: BIOL-K 324. Recommended completion of upper-level biochemistry course. This course focuses on the molecular underpinnings of neuropharmacology. In the first part of the course - Fundamentals of Neuropharmacology - we will look at basic principles of neuropharmacology including understanding how drugs bind to their targets. Also, we will evaluate how neurons communicate with each other and how those signals are transduced on a molecular level. Part 2 will evaluate where drugs act in the brain and some of the major neurotransmitters. Part 3 will focus on neuronal dysfunction in various disorders and how we can treat those disorders pharmacologically. Spring.
- BIOL-K 483 Biological Chemistry (3 cr.) P: CHEM-C 342. P: or C: BIOL-K 324. Chemistry of biologically important molecules including carbohydrates, lipids, proteins, and nucleic acids. Special emphasis on chemistry of intermediary metabolism. Not offered on a regular basis.
- BIOL-K 484 Cellular Biochemistry (3 cr.) P: BIOL-K 322 and CHEM-C 342. P or C: BIOL-K 324. Emphasis on selected topics in cellular biochemistry, including nucleic acid: protein interactions, protein: protein interactions, protein synthesis, biogenesis of membranes, and signal transduction. Current techniques for studying these processes in higher eukaryotes will be discussed. Spring.
- BIOL-K 488 Endocrinology in Health and Disease (3 cr.) P: BIOL-K 103, BIOL-K 324, and BIOL-K 322 or approved equivalent courses. Upper-level biochemistry or equivalent course recommended. An introduction to human endocrinology, including the biology of the major endocrine organs and the roles of the hormones that they release. Both normal endocrine function and common diseases involving hormone physiology are examined. In addition, the course examines how endocrinology impacts everyday life. Spring.
- BIOL-K 490 Capstone (1 cr.) P: Senior standing. Faculty-directed or approved independent library research on an area of public, scientific interest or a community service activity in local industry, government, schools, or other public science-related groups or organizations. Fall, Spring, Summer.
- BIOL-K 493 Independent Research (1-3 cr.) P: Consent of instructor. A course designed to give undergraduate students majoring in biology an opportunity to do research in fields in which they have a special interest. Fall, Spring, Summer.
- BIOL-K 494 Senior Research Thesis (1 cr.) P: BIOL-K 493. A formally written report describing the results or accomplishments of BIOL-K 493. Fall, Spring, Summer.
- BIOL-K 495 Special Topics in Biology (0-3 cr.) P: Junior or senior standing or consent of instructor; other prerequisites may be announced at the time of topic offering. Lectures on contemporary issues in biology. This course may also include reading assignments and special projects. Fall, Spring, Summer.
- BIOL-S 325 Honors Cell Biology Laboratory (2 cr.) P: or C: BIOL-K 324. The goal of this course is to demonstrate the concepts of how fundamental cellular processes can be demonstrated in a laboratory setting. The course reflects a breadth of experimental approaches used in cell biology today and will allow students to develop a sense of how cells accomplish certain ends and why. There is a major emphasis on primary research literature. Spring.
- BIOL-S 323 Honors Genetics and Molecular Biology Laboratory (2 cr.) P: or C: BIOL-K 322. In this course, students will apply principles of genetics and molecular biology using organisms of increasing complexity from bacteria to the fruit fly. In this laboratory, students will learn many important genetics and molecular biology lab techniques such as: mutagenesis, DNA extraction, restriction enzyme analysis, primer design, bioinformatics applications, and PCR. There will be a major emphasis on primary research literature. Fall.
- BIOL-S 357 Honors Microbiology Lab (2 cr.) P: or C: BIOL-K 356. In this course, students will become proficient in techniques for cultivation and utilization of microorganisms, along with many assays for microorganism identification. There will be a major emphasis on primary research literature. Spring.
Courses for the Nonmajor
- BIOL 10011 Principles of Biomedical Sciences (3 cr.) Students investigate the human body systems and various health conditions including heart disease, diabetes, sickle-cell disease, hypercholesterolemia, and infectious diseases. They determine the factors that led to the death of a fictional person, and investigate lifestyle choices and medical treatments that might have prolonged the person's life. The activities and projects introduce students to human physiology, medicine, research processes and bioinformatics. This course is designed to provide an overview of all the courses in the Biomedical Sciences program and lay the scientific foundation for subsequent courses.
- BIOL 10012 Human Body Systems (3 cr.) P: BIOL 10011. Students examine the interactions of body systems as they explore identity, communication, power, movement, protection and homeostasis. Students design data acquisition software to monitor body functions such as muscle movement, reflex and voluntary action, and respiration. Exploring science in action, students build organs and tissues on a skeletal manikin, work through interesting real world cases and often play the role of biomedical professionals to solve medical mysteries.
- BIOL 10013 Medical Interventions (3 cr.) P: BIOL 10012. Students investigate the variety of interventions involved in the prevention, diagnosis and treatment of disease as they follow the lives of a fictitious family. The course is a "How-To" manual for maintaining overall health and homeostasis in the body as students explore: how to prevent and fight infection; how to screen and evaluate the code in human DNA; how to prevent, diagnose and treat cancer; and how to prevail when the organs of the body begin to fail. Through these scenarios, students are exposed to the wide range of interventions related to immunology, surgery, genetics, pharmacology, medical devices and diagnostics. Lifestyle choices and preventive measures are emphasized throughout the course as well as the important roles scientific thinking and engineering design play in the development of interventions of the future.
- BIOL 10014 Biomedical Innovation (3 cr.) P: BIOL 10013. In this capstone course, students apply their knowledge and skills to answer questions or solve problems related to the biomedical sciences. Students design innovative solutions for the health challenges of the 21st century as they work through progressively challenging open-ended problems, addressing topics such as clinical medicine, physiology, biomedical engineering, and public health. They have the opportunity to work on an independent project and may work with a mentor or advisor from a university, hospital, physician's office, or industry. Throughout the course, students are expected to present their work to an adult audience that may include representatives from the local business and health care community.
- BIOL-N 100 Contemporary Biology (3 cr.) Fall, day, night; Spring, day, night; Summer. Selected principles of biology with emphasis on issues and problems extending into everyday affairs of the student.
- BIOL-N 107 Exploring the World of Animals (4 cr.) Equiv. PU BIOL 109. Fall, Spring, Summer. This course introduces students to animals and their native environments. It surveys individual ecosystems and highlights the interactions, features, and characteristics of the animals found there. Examples of discussion topics include unique features of animals, animal relationships, societies and populations, exotic species, and behavior, including mating, communication, feeding and foraging, and migration. Environmental issues including the effects of pollution on ecosystems are also discussed. Not equivalent to BIOL-K 103.
- BIOL-N 108 Plants, Animals and the Environment (3 cr.) This course is designed to provide students and future K-8 teachers with a background in the general biology concepts of plants, animals and the environment, which are the backbone of the State of Indiana science standards. Not offered on a regular basis.
- BIOL-N 120 Topics in Biology (3 cr.)
- BIOL-N 200 The Biology of Women (3 cr.) Fall, day, night; Spring, day, night; Summer. This course examines the biological basis for bodily functions and changes that take place throughout the life of females.
- BIOL-N 207 Physiology for Healthcare Management (3 cr.) Spring, Summer. This course is designed to provide students with a beginning, but solid foundation in Physiology. This course will focus on the study of internal and external structures, and the physical relationships between these structures. Physiology in this course will be studied at many levels, from molecular through microscopic to whole body, and we will also analyze some physiological concepts from a pathophysiology perspective.
- BIOL-N 211 Anatomy for Healthcare Management (3 cr.) Fall, Summer. This course focuses on internal and external structures and the physical relations between them. Anatomy is studied at many levels, from molecular through microscopic to gross anatomy, and anatomical concepts are studied from a developmental perspective. Models, slides, photographs, and dissections are used. Note: Cannot substitute for BIOL N261 Human Anatomy (5 cr.).
- BIOL-N 212 Human Biology (3 cr.) Equiv. PU BIOL 201. Fall, day. First course in a two-semester sequence in human biology with emphasis on anatomy and physiology, providing a solid foundation in body structure and function.
- BIOL-N 213 Human Biology Laboratory (1 cr.) P: or C: BIOL-N 212. Fall, day. Accompanying laboratory for BIOL-N 212.
- BIOL-N 214 Human Biology (3 cr.) P: BIOL-N 212. Equiv. PU BIOL 202. Spring, day. Continuation of BIOL-N 212.
- BIOL-N 215 Human Biology Laboratory (1 cr.) P: or C: BIOL-N 214. Spring, day. Accompanying laboratory for BIOL-N 214.
- BIOL-N 217 Human Physiology (5 cr.) Equiv. IU PHSL-P 215. Fall, day; Spring, day; Summer, day. Lectures and laboratory work related to cellular, musculoskeletal, neural, cardiovascular, gastrointestinal, renal, endocrine, and reproductive function in humans.
- BIOL-N 222 Special Topics in Biology (1-3 cr.) A variable-topic course dealing with current topics in biology. In a given semester, a topic such as disease, genetics, the environment, etc., will be dealt with as a separate course.
- BIOL-N 225 Urban and Suburban Gardening (2 cr.) P: High School biology. Spring, even years. Course is intended for both biology and non-biology majors. Designed to expand understanding of the science and techniques of gardening with emphasis on healthy soil and its impact on plant growth. After completing the course, students will be able to describe what makes plants grow and what makes plants grow healthy. No gardening experience is required.
- BIOL-N 226 Wildflowers and Ferns of Indiana Forests (2 cr.) Spring. This course will focus on spring wildflowers and other plants that occur in the various forest types in Indiana. At the end of the course, students are expected to be proficient in identifying by both common and botanical names up to 75 forest plants. In addition, they will learn nomenclature, basic taxonomic classification, and how to use simple dichotomous keys. Students will also become familiar with the natural regions of Indiana, natural community types, and natural history information of select plant species.
- BIOL-N 230 Biology, Design and History of Japanese Gardens (3 cr.) Summer. This course will introduce students to the different styles of Japanese gardens including dry landscape gardens, pond gardens, stroll gardens, tea gardens, and courtyard gardens. The course will emphasize the growth and maintenance of plants in a controlled environment and the interplay of the plants with the non-living elements of the garden. Selected gardens in Kyoto, Uji, and Nara, Japan will serve as examples of the various types of gardens, the periods of history that they represent and the design influences exhibited by these gardens. Importantly, the gardens will be experienced first hand allowing the students to form their own impressions and feelings for the gardens. This class will be intensive and will involve walking to and through the gardens.
- BIOL-N 251 Introduction to Microbiology (3 cr.) P: One semester general chemistry or one semester life science. Fall, Spring, day, night. This course includes a laboratory component. The isolation, growth, structure, functioning, heredity, identification, classification, and ecology of microorganisms; their role in nature and significance to humans.
- BIOL-N 261 Human Anatomy (5 cr.) Equiv. IU ANAT-A 215. Fall, Spring, Summer. Lecture and laboratory studies of the histology and gross morphology of the human form, utilizing a cell-tissue-organ system-body approach.
- BIOL-N 322 Introductory Principles of Genetics (3 cr.) P: BIOL-N 107 or BIOL-K 101. Equiv. PU AGR 430. Spring, night. Basic principles of plant and animal genetics. Emphasis on transmission mechanisms as applied to individuals and populations. For students in health and agricultural sciences.
- BIOL-N 400 Biological Skills for Teachers (3 cr.) P: Consent of instructor. Fall, night. Concepts and laboratory skills necessary to prepare teachers with diverse backgrounds to return to graduate academic biology courses are reviewed. Topics include general principles of biology, biochemistry, and biomathematics.
- BIOL-N 461 Cadaveric Human Anatomy (5 cr.) P: BIOL-N 261 Human Anatomy, (minimum grade of B) and BIOL-N 217 Human Physiology (minimum grade of B) or instructor approval. Spring. This course is designed for upper-level undergraduate students who desire an advanced understanding of Human Anatomy, especially those who intend to pursue a career in the health professions. Through the use of cadaveric dissection, prosected materials, and digital images, the student will explore the structural details of the human body, with a particular emphasis on functional anatomy and clinical correlations. This course will be an intensive learning experience for motivated undergraduates.
Advanced Undergraduate and Graduate Level
- BIOL 50700 Principles of Molecular Biology (3 cr.) P: BIOL-K 322, CHEM-C 342, or consent of instructor. Molecular aspects of structure and function of nucleic acids and proteins, including recombinant DNA research. Prokaryotic and eukaryotic molecular biology are given equal weight. Fall.
- BIOL 51600 Molecular Biology of Cancer (3 cr.) P: BIOL-K 322, CHEM-C 342 or a course in biochemistry. A detailed course examining the molecular mechanisms controlling the growth of animal cells. Emphasis on current experimental approaches to defining the molecular basis of growth regulation in developing systems and the uncontrolled proliferation of cells in metabolic disorders, such as cancer. Spring.
- BIOL 53000 Introductory Virology (3 cr.) P: BIOL-K 356, CHEM-C 342. Detection, titration, and chemistry of viruses; viral host interactions: bacteriophage-bacterium, animal virus-animal cell, plant virus-plant cell; tumor viruses: infection and transformation. Not offered on a regular basis.
- BIOL 54000 Topics in Biotechnology (3 cr.) P: BIOL-K 322 and CHEM-C 341, or consent of instructor. Examines research techniques and applications for several technologies situated at currently recognized biological frontiers, including recombinant DNA technology, hybridoma technology, protein engineering, agricultural research, and microbiological engineering. Not offered on a regular basis.
- BIOL 54410 Sensory Systems (3 cr.) P: BIOL-K 324. The goal of Sensory Systems is to gain an understanding of the mechanisms that underlie sensory perception at the molecular, cellular, and systems level. This will be accomplished by examining how various forms of energy are transduced into the electrochemical messages of the nervous system, what pathways the information travels within the nervous system, and how this information is processed and perceived. Spring.
- BIOL 54800 Techniques in Biotechnology (3 cr.) P: BIOL-K 322, CHEM-C 342, or consent of instructor. Laboratory experience in techniques applicable to biotechnology: protein chemistry, molecular biology, and immunology. Not offered on a regular basis.
- BIOL 55000 Plant Molecular Biology (3 cr.) P: BIOL-K 322, CHEM-C 341, or consent of instructor. A comprehensive study of plant molecular biology and plant molecular genetics. Topics will include the structure and expression of plant nuclear, chloroplast, and mitochondrial genomes, and plant viruses. Fall.
- BIOL 55600 Physiology I (3 cr.) P: BIOL-K 103, CHEM-C 342. Principles of physiology: nerve and muscle, temperature regulation, ion and water balance. Fall.
- BIOL 55700 Physiology II (3 cr.) P: 556 or consent of instructor. A study of human cardiovascular, pulmonary, blood, and gastrointestinal systems. Higher neuronal functions and intersystem interactions will be discussed. Spring.
- BIOL 55900 Endocrinology (3 cr.) P: BIOL 55600 or equivalent, and CHEM-C 342. The study of hormone function. Consideration will be given to the role of hormones in growth, development, metabolism, homeostasis, and reproduction. Fall, Spring.
- BIOL 56010 Clinical and Molecular Aspects of Neurodegenerative Diseases (3 cr.) P: BIOL-K 416 or BIOL-K 451 or instructor consent. This course focuses on the molecular and clinical aspects of neurodegenerative diseases. The first part of the course will briefly introduce critical brain structures, with a focus on neurons and glia and will evaluate molecular mechanisms that underlie protein aggregation and cell death. The remainder of the course will focus on the multiple aspects of specific neurodegenerative diseases. Fall.
- BIOL 56100 Immunology (3 cr.) P: BIOL-K 103, CHEM-C 341. Introduction to basic principles and experimentation in cellular and humoral immunology. Fall.
- BIOL 56400 Molecular Genetics of Development (3 cr.) P: BIOL-K 322 or similar course or consent of instructor. The course examines the genetic and developmental bases as well as phenotypes of 40 genetic disorders. Chromosomal, single gene, complex and developmental genetic disorders are studied in detail. Emphasis is placed on molecular techniques and understanding current primary literature. Spring.
- BIOL 56600 Developmental Biology (3 cr.) P: BIOL-K 322. Principles of animal development. The emphasis is on concepts and underlying mechanisms of developing and regenerating systems and stem cell properties, including molecular and biochemical approaches. Fall.
- BIOL 56800 Regenerative Biology and Medicine (3 cr.) P: BIOL-K 324 or BIOL-K 331 or a biochemistry course. This course examines the mechanisms of natural regeneration (regenerative biology) and the application of these mechanisms to the development of therapies to restore tissues damaged by injury or disease (regenerative medicine). Not offered on a regular basis.
- BIOL 57000 Biological Membranes (3 cr.) P: CHEM-C 342 or consent of instructor. An examination of structure and function of biological membranes. Topics include lipid and protein composition and interactions, physiological properties of membranes, physiological methods of analysis, model membrane systems, and survey of specific biological membranes and their modes of action. Not offered on a regular basis.
- BIOL 57100 Developmental Neurobiology (3 cr.) P: Consent of instructor. The major phases of nervous system development beginning with neurolation and neurogenesis and ending with the onset of physiological activity will be studied in a variety of animals, mainly avians and mammals (including man). Neural developmental disorders and behavioral ontogeny will also be considered. Fall.
- BIOL 57310 Stem Cell Biology (3 cr.) P: BIOL-K 324. In this course, students will develop a clear understanding of stem cells' defining features, activities and potential utility. Stem cell research is pursued in nearly all areas of medicine. This course focuses on important definitions and characteristics of stem cells and develops a general overview of stem cell biology. The course builds on this overview of stem cell biology by examining specific examples of developmental biology, methodology and the potential applications of stem cell therapy. Spring.
- BIOL 57410 Molecular and Cellular Bone Biology (3 cr.) P: BIOL-K 101, BIOL-K 103, BIOL-K 324. This course is designed for graduate and senior undergraduate students. Concentration on basic cellular and molecular concepts of bone and cartilage with applications to engineering concepts. Topics include bone development and growth, cartilage and chondrocyte, signal transduction in bone cells, stem cells, skeletal regeneration, tissue engineering, gene therapy and cancer bone metastasis. Fall.
- BIOL 57850 Epigenetics (3 cr.) P: Undergraduate course in biochemistry and/or molecular biology or consent of instructor. Epigenetics refers to heritable patterns of gene expression and phenotype that occur without altered DNA sequence. The molecular basis for many epigenetic phenomena resides at the level of chromatin structure. Originally thought to provide primarily a packaging function, the assembly of DNA with proteins to form chromatin is now known to be a dynamic process that is essential for proper regulation of gene expression. It is now appreciated that perturbed epigenetic regulation is associated with a variety of human diseases, such as cancer, and that a better understanding of this biology may reveal novel therapeutic approaches to treat these disorders. This course will introduce students to epigenetic phenomena in various organisms, ranging from yeast to humans, and explore the fundamental molecular biology that controls this level of gene regulation. Students will be exposed to the primary scientific literature, and gain experience in presenting original research findings to their peers. Not offered on a regular basis.
- BIOL 59500 Special Assignments (1-3 cr.) P: Consent of instructor. Special work, such as directed reading, independent study or research, supervised library, laboratory or fieldwork, or presentation of material not available in the formal courses of the department. Fall, Spring, Summer.
Graduate Level
- BIOL 60900 Scientific Research Bootcamp (3 cr.) P: Enrolled in an MS Thesis or PhD program in the School of Science. This course introduces graduate students (Thesis Masters's and Ph.D.) to research approaches and analysis programs, research presentation skills, and the proper conduct of research. This bootcamp course fulfills the requirement for Responsible Conduct in Research training that is required for students with certain funding and paid off of NIH/HSF grants. Moreover, this course introduces students to programs such as Adobe Illustrator, Adobe Photoshop, GraphPad Prism, SPSS, and Image J., some or all of which they will be using during their graduate careers and beyond.
- BIOL 62500 Immune System Disorders (3 cr.) P: BIOL-K 338. The aim of this course is to understand the underlying mechanisms that contribute to immune system dysfunction. We will discuss the genetic defects in the immune system, immune complex diseases, immune mediated hypersensitivity reactions and autoimmune diseases. This course covers fundamentals as well as current topics in the field of immunology. Fall.
- BIOL 64100 Microbial Genetics (2 cr.) P: BIOL-K 323, CHEM-C 342 and consent of instructor. Genetics of bacteria, bacterial viruses, and other microorganisms with emphasis on organization, replication, and function of the genetic material. Spring odd years, night.
- BIOL 69600 Seminar (1 cr.) Each semester there are several separate offerings. They will likely be on the following topics: biochemistry, biology teaching, ecology and population biology, genetics, mechanisms of development, microbiology, neurobiology, and plant physiology. Oral presentations required. Fall, Spring. May be repeated for credit.
- BIOL 69700 Special Topics (1-3 cr.) The frontiers of biology. Critical examination of developments in the various specialties represented by the members of the department. Currently, advanced work in the following and related fields can be offered: molecular genetics; structure and biosynthesis of biologically significant molecules; the nature of biological specificity and enzyme catalysis; the fine structure and chemistry of subcellular particles, cells, and tissues; microbial and plant metabolism; comparative biochemistry; genetics and physiology of viruses, bacteria, fungi, protozoa, helminths, and cells of higher forms of life; the genetics, structure, development, and physiology of plants and animals, including endocrinology and work physiology; excitable membranes; neurobiology, ecology, systematics, and evolution of microorganisms, plants, and animals; host-parasite relationships including immunology; and the teaching of biology. The field in which work is offered will be indicated in the student's record. May be repeated for credit.
- BIOL 69800 Research M.S. Thesis (Arr. cr.) M.S. Thesis.
- BIOL 69900 Research Ph.D. Thesis (Arr cr.) Research Ph.D. Thesis.
- BIOL-G 901 Advanced Research (6 cr.)