Programs by Campus


Earth and Atmospheric Sciences



  • EAS-E 406 Introduction to Geochemistry (3 cr.) P: G222, MATH M212 or M216, and CHEM C117. Chemistry in the study of the earth, employing elementary chemical thermodynamics, the phase rule, chemical equilibria, redox, reactions, the radioac­tive decay law, and organic chemistry.
  • EAS-E 411 Invertebrate Paleontology (3 cr.) P: BIOL L105 or S105; and one 300-400-level course in biology or geology. Structure, classification, habitats, and geological history and significance of the invertebrate phyla. Laboratory study of fossils.
  • EAS-E 416 Economic Geology (3 cr.) P: G334; CHEM C106-C126 or consent of instructor. Geologic occurrence and genesis of eco­nomic mineral deposits, including petroleum and coal. Intro­duction to mining, processing, and exploration methods. Two lectures and one 2-hour laboratory meeting per week.
  • EAS-E 420 Regional Geology Field Trip (1-2 cr.) P: Consent of instructor. Field investigation of selected regions of North America for study of mineralogical, lithological, stratigraphic, structural, paleontological, geomorphological, or other geologi­cal relationships. Six to ten days in the field. May be repeated.
  • EAS-E 423 Methods in Applied Geophysics (4 cr.) P: G413 or equiva­lent. Application of geophysical principles to field and labora­tory experiments, with emphasis on data acquisition, analysis, and geologic interpretation. Experiments include earthquake seismology, electrical resistivity, magnetic and gravity surveys, and reflection and refraction seismology.
  • EAS-E 427 Introduction to X-Ray Mineralogy (2-3 cr.) P: G221. Theory and practice of X-ray powder diffraction. Measurement and analysis of digital diffractometer data, including profile fitting and Rietveld refinement, with applications to geological, environmental, and structural-chemical problems.
  • EAS-G 429 Field Geology in the Rocky Mountains (5-8 cr.) P: G222, G323. Five to eight weeks, including four to six weeks at the Geologic Field Station in Montana. Geologic reconnaissance, measurement of stratigraphic sections, mapping on aerial photographs, construction of structure sections. Regional geomorphology, stratigraphy, and structure through South Dakota, the Black Hills, Wyoming, Montana, Yellowstone Park, and Glacier Park.
  • EAS-G 503 Phase Equilibria (3 cr.) P: C360, G406, or consent of instructor. Thermodynamic functions and conditions of equi­libria in unary, binary, ternary, and multicomponent systems. Mixing properties of crystalline solutions. Chemical potential and activity diagrams.
  • EAS-G 504 Metamorphic Petrology (3 cr.) P: G418, G503. The evolu­tion of mineral assemblages and compositions during prograde metamorphism. Reaction mechanisms. Effect of fluid composi­tion on mineral assemblages. Theoretical basis and description of various projection schemes. Appraisal of selected experi­mental studies.
  • EAS-G 506 Principles of Igneous Petrology (3 cr.) P: G418. Origin, composition, classification, phase relationships, and distribution of igneous rocks; economic considerations. Emphasis on province, associations, and facies type.
  • EAS-G 509 Theoretical Geochemistry (4 cr.) P: C360, C361, P340, or G406 or the equivalent; consent of instructor. Thermodynamics and solution chemistry as tools in geochemistry; designed for students planning advanced work or research in geochemistry.
  • EAS-G 513 Seismology I (3 cr.) P: MATH M343 or M313; PHYS P222. Earthquakes, propagation of elastic waves, interpretation of seismological data, theory of seismological instruments. Core: solid-earth dynamics.
  • EAS-G 514 Geophysical Signal Analysis (3 cr.) P: PHYS P222; MATH M343 or M313. Construction, analysis, and interpretation of geophysical signals. Filter theory, spectral analysis, signal-to-noise enhancement, transform theory, seismic wave propaga­tion, computer applications.
  • EAS-G 515 Analysis of Earthquake Seismograms (1 cr.) P: G413. Analysis of local, regional, and teleseismic phases recorded on the Indiana University long- and short-period seismographs. Use of seismic records to determine earthquake source param­eters, deep earth structure, and near-station structure. Surface wave dispersion and structure of the lithosphere.
  • EAS-G 520 Mechanics for the Earth Sciences (1 cr.) P: M211, M212. Fundamentals of continuum mechanics with emphasis on the derivation and solution of governing equations in elasticity, viscous flow, heat transfer, and groundwater flow.  Problems in faulting, postseismic and postglacial relaxation, flexure of strata and lithosphere, emplacement of dikes/sills, flow of debris and ice, and groundwater flow.
  • EAS-G 521 Micropaleontology (3 cr.) P: G404 or G411 or advanced standing in biological sciences. Morphology, biology, ecology, biostratigraphy, and phylogenetic relationships of microfossils. Course will survey the common fossil groups, including cy­anobacteria, diatoms, dinoflagellates, acritarchs, foraminifera, and radiolaria.
  • EAS-G 524 Carbonate Facies and Environments (3 cr.) P: Graduate standing. Carbonate environments from modern and ancient examples (including subsurface). Various ramp and platform margin depositional models. Emphasis on types and origin of facies. Current and classical literature on carbonates.
  • EAS-G 534 Dynamic Meteorology: Synoptic to Global Scale (3 cr.) P: MATH-M211-M212, PHYS-P201 or P221 (P221 recommended), GEOG-G304 or G532 or consent of instructor. Introduction to dynamical processes and analysis in the atmosphere. Principles of fluid dynamics and their application to the atmosphere. Basic conservation laws and equations of motion. Circulation and vorticity. Dynamics of synoptic systems: quasigeostrophic analysis; oscillations and waves; baroclinic instability; and cyclogenesis. General circulation. Numerical modeling.
  • EAS-G 537 Synoptic Meteorology and Climatology (3 cr.) P: G304 or G532 or consent of instructor.  Analysis and prediction of synoptic scale weather systems, emphasizing the mid-latitudes. Other topics covered include severe weather and atmospheric/ oceanic teleconnections.
  • EAS-G 538 Air Pollution Meteorology (3 cr.) P: G304 or G532 or consent of instructor.
  • Analysis of the physical laws that govern the transport, transformation, and removal of atmospheric pollutants. Primary emphasis will be on physical and chemical processes, although biological impacts will also be considered as the use of models and remote sensing, are also developed.
  • EAS-G 540 Physical Meteorology, Climate, and Paleoclimate (3 cr.)
  • Topics span all the scales of atmospheric processes; from climate change to weather forecasting and surface energy budgets. Students are introduced to the physical processes and properties of the atmosphere. Skills used to study and quantify atmospheric processes, such as the use of models and remote sensing, are also developed.
  • EAS-G 544 Methods in Analytical Geochemistry (2 cr.) G544-Methods in Analytical Geochemistry is designed as an overview of basic collection and preparation of water, soil and rock samples for elemental analysis by analytical geochemical techniques used in environmental and exploration geology, as well as, geochemical studies. The course is designed to give background and context to published data sets for critical evaluation. Finally, it is an opportunity to develop scientific writing skills. G544 is taught simultaneously with the undergraduate course G444, with additional written assignment for Graduate Credit. Graduate students taking the class for G544 will have an additional written assignment due the last third of the class (TBA) involving compilation, analysis and interpretation of a data set of their choosing, that will be factored into the written assignment portion of the grade. This work is in addition to the assignments of the G444 component.
  • EAS-G 550 Surface Water Hydrology (3 cr.) P: G451 and M216, or consent of instructor. Mechanics of surface runoff and open channel flow. Rainfall-runoff equations, probability analysis of stream flow, and watershed simulation models. Chemistry of surface waters and stream pollution. Core: environmental geoscience.
  • EAS-G 551 Advanced Hydrogeology (3 cr.) P: G451. Basic principles and quantitative aspects of physical flow systems and chemistry of ground water and surface water. The relationships between water and geologic materials. Core: environmental geoscience.
  • EAS-G 554 Fundamentals of Plate Tectonics (2 cr.) P: Graduate standing in geology or consent of instructor. Synthesis of observations from diverse disciplines of geology leading to the development of modern plate tectonic theory. Applications of plate tectonic principles to fundamental problems of continen­tal and marine geology. Core: solid-earth dynamics.
  • EAS-G 556 Wind Power Meteorology (3 cr.) P: G304, G362, or consent of instructor.
  • The science of wind power meteorology will be explained with a focus on practical elements of how to measure wind resources, estimate wind turbine loads and wind turbine siting. The class is divided into a lecture and laboratory type format with project work.
  • EAS-G 561 Paleoecology (3 cr.) P: G334 and G404 or G411. Relation­ships between modern and fossil organisms and their physical, chemical, and biological environments; emphasis on techniques for interpreting past environmental conditions.
  • EAS-G 562 Geometric Morphometrics (3 cr.) Practical, applied introduction to geometric morphometric analysis of shape. Students learn to collect, analyze, and interpret geometric morphometric data. Shape theory and methods are covered, including Procrustes superimposition and its statistical implications, analysis of curves and outlines, and Monte Carlo modeling of shape.
  • EAS-G 563 Quantitative Paleontology (3 cr.) Practical applications of quantitative analysis as they relate to paleontology, including the analysis of diversity through time, analysis of diversity in space, analysis of morphological disparity, and reconstruction of phylogenetic relationships. Skills include Monte Carlo statistical tests, analysis of large data sets, use of relational SQL databases, and the application of GIS to paleontological problems.
  • EAS-G 570 Micrometeorology (3 cr.) P: GEOG-G304, G340, G532, G540, MATH-M211-M212, or consent of instructor.
  • Atmospheric processes at the micro and local scale. Topics include energy and mass exchange over simple non-vegetated surfaces, vegetated surfaces, non-uniform terrain, and inadvertent climate modification.
  • EAS-G 571 Principles of Petroleum Geology (3 cr.) P: G323. Origin, geochemistry, migration, and accumulation of petroleum; reservoir rocks; types of entrapment; exploration procedures and their rationale; methods and devices for data gathering and detection.
  • EAS-G 572 Basin Analysis and Hydrocarbons (3 cr.) P: G323 and G334. Modern concepts of tectonics and sedimentary basin analysis. Geologic application of geophysical logs and seismic stratigraphy to basin analysis, facies distribution, and structural style in a variety of basin types with specific examples from around the world. Techniques of hydrocarbon assessment in basinal settings.
  • EAS-G 576 Climate Change Science (3 cr.) P: At least two undergraduate courses in the physical sciences or consent of instructor. Evidence for and theories of climate change over a range of time scales. Sources of natural climate forcing are presented, historical evolution of climate change is quantified, and model tools and climate projections are presented along with analyses of climate change impacts.
  • EAS-G 581 Surficial Geology (3 cr.) Study of earth surface process, landforms, and unconsolidated deposits is fundamental to several subdisciplines of geology, especially hydrogeology and environmental geology.
  • EAS-G 582 Computational Methods for Earth Scientists (3 cr.) P: M211-M212 or equivalent. Students will develop numerical solutions to ordinary and partial differential equations which describe a wide variety of geologic processes which could include fluid flow, heat transfer, sediment transport, seismic wave propagation through elastic solids, isotopic fluid-rock interactions.
  • EAS-G 583 Isotope Geochemistry (3 cr.) Introduction to the theory and application of radiogenic and stable isotopes to a variety of subdisciplines in the earth sciences. Topics include geochronol­ogy, tracers, mass balance and mixing, hydrology and environ­mental applications, water-rock interaction, and biogeochemi­cal cycles.
  • EAS-G 584 GIS Applications in Geology (3 cr.) P: Experience in GIS or map reading. Application of Geographic Information System (GIS) and Global Positioning System (GPS) technologies address problems in the geosciences. Field mapping using GPS and other methods is undertaken to develop GIS layers and at­tributed features that are analyzed to support or refute specific research hypotheses.
  • EAS-G 586 Geochemical Modeling (3 cr.) P: C360, C361, P340, or G406 or the equivalent; consent of instructor. Introduces stu­dents to the theories and applications of geochemical model­ing. Students will have the opportunity to acquire hands-on experience with popular geochemical codes. 
  • EAS-G 587 Organic Geochemistry (3 cr.) P: Consent of instructor. Application of organic geochemical methods in determining origins of fossil fuels and in defining biological and environmen­tal histories of rocks.
  • EAS-G 588 Paleobiogeography (3 cr.) P: L318; G404 or L374; G561 or L473. Introduction to the theory and practice of analyzing the spatial and temporal distribution of past life, with consideration of the biostratigraphic evolution of major life forms. Models of dispersion patterns are analyzed within a plate tectonic and paleoclimate context.
  • EAS-G 589 Geomicrobiology (3 cr.) P: Two semesters each of undergraduate biology and chemistry. Geomicrobiology provides an introduction to the diversity and physiology of microbes in soil, sediment, lake, ocean, and ground-water environments. The first half of the course focuses on microbial classification, growth, metabolism, and genetic phylogeny in order to build a conceptual framework and technical vocabulary. The second half of the course integrates lecture with discussion of recently published journal articles.
  • EAS-G 590 The Art of Geological Science (1 cr.) An introductory seminar for all incoming graduate students in Geological Sciences designed to help the transition from undergraduates to active research scientists, focusing on the practical skills required for success. The course engages students in broadening their perspectives of the geosciences via the departmental colloquium series, and practical aspects of research activities including writing publications and proposals.
  • EAS-G 591 Physical Sedimentology (3 cr.) P: G415, G501 or equiva­lent. Dynamics of fluid flow, hydraulics of sediment transport, interaction of physical processes in depositional environments. Field study of selected modern depositional environments.
  • EAS-G 600 Advanced Techniques (arr. cr.) P: Consent of instructor. **These courses are eligible for a deferred grade. Training in special geologic methods such as exploration seis­mology, experimental petrology, X-ray spectroscopy, electron probe microanalysis, isotopic and organic mass spectrometry.
  • EAS-G 601 Clay Mineralogy (3 cr.) P: Consent of instructor. Composi­tion, structure, properties, methods of identification, and origin and distribution of clay minerals.
  • EAS-G 612 Inverse Methods in Geophysics (3 cr.) P: MATH M301, M303, or equivalent. Mathematical techniques to infer the properties of the deep interior of the earth from geophysi­cal data and to appraise the reliability of the results. Theory of generalized inverses in finite dimensional vector spaces and Hilbert space. Resolving power of data. Nonlinear inverse methods.
  • EAS-G 613 Seismology II (3 cr.) P: G513. Theory of wave propagation in layered elastic media: Lamb’s problem, Cagnaird’s method, and propagator matrices. Body force equivalents and the moment tensor representation of seismic sources. Additional selected topics. (Not currently offered)
  • EAS-G 616 Metalliferous Mineral Deposits (3 cr.) P: G416 and G406, or equivalent. Geological processes controlling ore deposition. Application of stable and radioactive isotopes, fluid inclusions, and thermodynamics to the study of ore deposits. Laboratory study of opaque minerals using reflected light microscopy.
  • EAS-G 633 Advanced Geophysics Seminar (1-3 cr.) P: Consent of instructor. S/F grading. Selected topics in earth physics. 
  • EAS-G 637 Seminar in Tectonics (1 cr.) P: Consent of instructor. Mul­tidisciplinary seminar focusing on regional-scale deformation of the earth’s lithosphere.
  • EAS-G 685 Evolution of Ecosystems (3 cr.) P: G561 or L575; G583; statistical methods. Advanced analysis of large-scale, cohesive environmental influences on ecosystem development and persistence through the rock record. Emphasis on paleo­ecologic grouping at community and higher levels. Analytical methods include advanced statistics and synthesis of published numerical, geochemical, and sedimentologic models.
  • EAS-G 690 Advanced Geology Seminar (arr. cr.) P: Consent of instructor. S/F grading. Seminars on critical research issues and topical themes. 
  • EAS-G 700 Geologic Problems (1-5 cr.) P: Consent of instructor. **These courses are eligible for a deferred grade. Consideration of special geological problems.
  • EAS-G 810 Research (arr. cr.) **These courses are eligible for a deferred grade.

Academic Bulletins

PDF Version

Click here for the PDF version.