IUPUI Bulletins »
Schools »
purdue-enginer-tech »
Courses »
Industrial Engineering Technology
Courses
Industrial Engineering Technology
- IET 10400 Industrial Organization (3 cr.) Class 3. A detailed survey of organizational structure: operations, finances, marketing, accounting, management, planning, control, personnel, quality, safety, wages, policy, and the human factors necessary for effective management.
- IET 15000 Quantitative Methods for Technology (3 cr.) P: MATH 15900 or MATH 15400. Application of statistical techniques to typical problems in technology. Topics include data collection, descriptive statistics calculation, hypothesis testing, sampling, continuous and discrete distributions, probability, and related topics. The course also introduces the use of spreadsheet and other software to solve statistical calculations. Introduction to SPC is included.
- IET 20400 Maintaining Quality (3 cr.) P: MATH 15300 and MATH 15400, or MATH 15900. Class 2, Lab 2. An analysis of the basic principles of quality control. Includes statistical aspects of tolerances; basic concept of probabilities; frequency distribution; X and R charts; and uses of mechanical, electronic, air, and light devices for checking and measuring levels of quality acceptance.
- IET 24000 Quality Techniques for Electronics Manufacturing (3 cr.) P: IET 15000. Survey of contemporary quality concepts and techniques. Topics include total quality management philosophy, process improvement, vendor certification, quality systems, ISO 9000 documentation, electronics industry quality applications, SPC, introduction to design experiments, basic reliability concepts, testing, and related topics. Team approaches to quality improvement and the application of the basic quality tools to improve processes are covered.
- IET 30000 Metrology for Quality Assurance (3 cr.) P: MET 10500 and MATH 15900 or equivalent. Class 2, Lab 2. An analysis of the basic principles of linear and geometric dimensional metrology. Topics include basic measuring instruments; mechanical, electronic, pneumatic, and optical measuring instruments; quality data acquisition systems; coordinate measuring machines; attribute gaging; geometric functional gaging; surface integrity determination; and geometric profile measurement.
- IET 30100 Cost Evaluation and Control (3 cr.) Class 3. Designing, installing, and improving standard cost systems in industry, including the establishment of basic standards. Development of the mechanics of operating control reports using principles of management by exception. Emphasis on use of electronic data processing for establishing and analyzing production cost standards.
- IET 35000 Engineering Economy (3 cr.) P: MET 10500 or TECH 10500 Class 3. Examines the concepts and techniques of analysis useful in evaluating the worth of systems, products, and services in relation to their cost. The objective is to help students grasp the significance of the economic aspects of engineering and to become proficient in the evaluation of engineering proposals in terms of worth and cost. Project analysis will require computer proficiency. Not open to students who have credit for IET 25000.
- IET 36400 Quality Control (3 cr.) Class 3. The course is aimed at determining customer needs and wants, interpreting these into a design during production, follow-up on field performance, and feeding back quality information to further improve the quality system.
- IET 37400 Nondestructive Testing (3 cr.) Class 2, Lab 2. Study of industrial X-ray and ultrasonic inspection, surface penetrant inspection, magnetic particle and holography applications, and laser interferometry.
- IET 45400 Statistical Process Control (3 cr.) P: IET 15000. Class 3. Design and analysis of statistical process control charts and industrial sampling plans. Not open to students who have credit for 35400.
- IET 47400 Quality Improvement of Products and Processes (3 cr.) P: IET 45400 or consent of instructor. Class 3. Introduction to experimental design to improve products or processes. Topics include fractional factorial experiments, response curves, experimental noise, orthogonal arrays, and ANOVA. DOE using classical and Taguchi techniques. Introduction to QFD, FEMQ, and Six Sigma for quality improvements.