IUPUI Bulletins » Schools » purdue-science » Courses » Forensic and Investigative Sciences

Courses

Forensic and Investigative Sciences
Undergraduate
  • FIS 10100 Investigating Forensic Science Lecture (1 cr.) Fall, Spring, Summer. Forensic science is the application of scientific methods to matters involving the public. Crime scene investigation will be taught so students will have general knowledge on techniques used in the field. Students will also be exposed to basic understanding of common forensic science concepts and learn how analysis of specific types of evidence is analyzed in a forensic science laboratory. Topics will include but are not limited to crime scene, hairs, explosives, fire debris, serology, DNA, illicit drugs, fingerprints, footwear, questioned documents, inks, glass, paints, blood spatter, and soils.
  • FIS 10101 Investigating Forensic Science (2 cr.) Fall, Spring, Summer. Forensic science is the application of scientific methods to matters involving the public. One of its principle applications is the scientific analysis of physical evidence generated by criminal activity. During this laboratory course you will learn basic techniques used to analyze forensic evidence. This will start with concepts in evidence documentation and collection. You will then learn concepts used in pattern recognition, forensic chemistry and biology, and trace evidence. There will be hands on activities in all these disciplines. Topics will include but are not limited to crime scene, fibers, hairs, explosives, fire debris, serology, DNA, illicit drugs, fingerprints, footwear, questioned documents, inks, glass, paints, blood spatter, and soils.
  • FIS 20500 Concepts of Forensic Science I (3 cr.) Fall, Summer Session I. Forensic science is the application of scientific methods to matters involving the public. One of its principle applications is the scientific analysis of physical evidence generated by criminal activity. During this course students will learn basic concepts in forensic science and criminal justice system and apply the basic concepts towards evidence collection and analysis. Topics will include fingerprints, impression evidence, firearms, questioned documents, pathology, entomology, anthropology, and forensic science and the law and ethics.
  • FIS 20600 Concepts of Forensic Science II (3 cr.) P: FIS 20500 and either CHEM-C101 or CHEM-C105 or FIS 10100 or FIS 10101. Spring, Summer Session II. Continuation of FIS 20500. Students will learn basic concepts in forensic chemistry and forensic biology and apply the basic concepts towards evidence analysis. Students will learn instrumental procedures and methods used in forensic chemistry and forensic biology to analyze and evaluate evidence. Topics will include microscopy, spectroscopy, chromatography, hairs and fibers, arson and explosions, soils, glass, paints and inks, serology and DNA, blood splatter, illicit drugs and toxicology.
  • FIS 30500 Professional Issues in Forensic Science (3 cr.) P: FIS 20500, FIS 20600. Fall, Spring. Ethics in forensic science. Crime laboratory culture. Recent issues in forensic science, quality assurance and control in a crime lab.
  • FIS 30600 Forensic Microscopy (3 cr.) P: FIS 20500, FIS 20600, CHEM-C 126. Students will learn techniques in the analysis of forensic microscopic evidence. Topics include: property of light, compound light microscopy, micrometry, refraction, dispersion, stereomicroscopy, sample preparation, polarizing light microscopy, and instrumental microscopy. Microsopes are used every day in class to handle forensic type of evidence. The overall goal of this course is to develop techniques to analyze trace evidence.
  • FIS 40100 Forensic Chemistry I (3 cr.) P: CHEM-C 310, CHEM-C 311, CHEM-C 342, CHEM-C 344, CHEM-C 325. Fall. This course will cover the major techniques and instruments used in the analysis of chemical and pattern evidence commonly encountered at crime scenes. The techniques of instrumental microscopy, gas, thin layer and liquid chromatography, and UV-visible and infrared spectrophotometry will be studied and used extensively. There will be lecture components for each of the type of instrumental analysis covered in the course.
  • FIS 40101 Forensic Chemistry I Laboratory (1 cr.) P: CHEM-C 310, CHEM-C 311, CHEM-C325, CHEM-C 342, CHEM-C 344, CHEM-C 411 or instructor consent. P: or C: FIS 40100. Fall. This course will cover the major techniques and instruments used in the analysis of chemical and pattern evidence commonly encountered at crime scenes. The techniques of instrumental microscopy, gas, thin layer and liquid chromatography, and UV-visible and infrared spectrophotometry will be studied and used extensively. There will be lab components for each of the type of instrumental analysis covered in the course.
  • FIS 40200 Forensic Biology (3 cr.) P: FIS 20600, BIOL-K 322, BIOL-K 324. Fall. This course is an introduction to the use of biological materials to assign identity to persons associated with a crime. The course will introduce methods for the preliminary detection of biological evidence and introduce the use of DNA. The materials learned will encompass broader topics such as immunology, molecular biology, and genetics.
  • FIS 40201 Forensic Biology Laboratory (2 cr.) P: or C: FIS 40200. Only open to students admitted to the FIS Program. Fall. This laboratory section includes practical exercises that reflect common practice in forensic science laboratories, including but not limited to collection and preservation of biological evidence, presumptive and confirmatory tests, DNA extraction, and PCR amplification.
  • FIS 40300 Forensic Genetics (3 cr.) P: FIS 40200 or instructor consent. Spring. This course is a continuation of FIS 40200 and will go into more detail about the structure of DNA, the application of molecular biology techniques for the determination of individual identity. The materials learned will encompass broader topics such as immunology, molecular biology, genetics, population genetics and statistics.
  • FIS 40301 Forensic Genetics Laboratory (2 cr.) P: or C: FIS 40300. P: FIS 40200, 40201 or instructor consent. Only open to students admitted to the FIS Program. Spring. This laboratory section includes practical exercises that reflect common practice in forensic science laboratories. This laboratory is a continuation of FIS 40201.
  • FIS 40400 Forensic Chemistry II (3 cr.) P: FIS 40100 or instructor consent. Spring. Continuation of FIS 40100. This course will cover the major techniques used in the analysis of chemical and trace evidence commonly encountered at crime scenes. This course will be broken down into 2 modules. The overall course will cover techniques used during the analysis of trace and chemical evidence in a forensic laboratory.
  • FIS 40401 Forensic Chemistry II Laboratory (1 cr.) P: FIS 40100, FIS 40101 or instructor consent. P: or C: FIS 40400. Open only to FIS majors. Spring. This course will cover the major techniques used in the analysis of chemical and trace evidence commonly encountered at crime scenes. This course will be broken down into 2 modules. The overall course will cover techniques used during the analysis of trace and chemical evidence in a forensic laboratory.
  • FIS 40900 Forensic Science Research (1-4 cr.) P: Requires application and approval of faculty member supervising the research. Forensic science or literature research with a report.
  • FIS 41500 Forensic Science and the Law (3 cr.) Fall, Spring. Application of various laws and rules of evidence to the forensic sciences and how the admission of evidence derived from forensic sciences can impact the administration of justice in the United States. Topics include preparation for testimony, expert testimony, subpoenas, basic judicial processes, admissibility of scientific evidence.
  • FIS 43000 Population Genetics (3 cr.) P: BIOL-K 322, BIOL-K 323, STAT 30100. Spring. This course will serve as an introduction to the principles of population genetics. The course will cover the theory behind population genetics that includes a historical perspective to the current accepted models of population theory; examine the relationships between allele and genotype frequencies, and the fundamentals of molecular evolutionary genetics.
  • (FIS 49000 Forensic Science Capstone (1 - 5 cr.) P: Forensic and Investigative Sciences Senior. Fall. This course covers career and graduate school preparation, forensic science research with a faculty mentor and forensic science kowledge review.  Students will be provided the opportunity to engage with professionals in the field.
  • FIS 49500 Internship in Forensic Science (0 - 5 cr.) P: Completion of application and permission of instructor. The internship experience is designed to bring together the diverse areas of knowledge that the student has gained during the pursuit of a Bachelor of Science in Forensic Science. It is a synthesis of knowledge; where the student takes what they learn in the classroom and translates that to the real world of forensic science. This is usually completed at the end of the student's undergraduate career in Forensic Science. The experience of an internship can aid with the transition to a crime laboratory. However, students have the opportunity to complete an internship at any time during their undergraduate career. The internships should be related to forensics and have ranged from a variety of experiences. Internship location must be approved by the instructor.
  • FIS 49600 Special Topics in Forensic Science (1 - 6 cr.) This is a variable topic course.
  • FIS 30100 Forensic Microscopy Lecture (1 cr.) P: FIS 20500 and FIS 20600 Fall, Spring. Discuss techniques used in the analysis of forensic trace evidence, such as impressions, glass, biological materials, hairs, and fibers. Topics include properties of light, compound microscopy, micrometry, refraction, dispersion, stereomicroscopy, and polarizing light microscopy.
  • FIS 30100 Forensic Microscopy Laboratory (1 cr.) P: P: FIS 20500 and FIS 20600 and CHEM-C126 C: 30100 Fall, Spring. Students will learn techniques in the analysis of forensic microscopic evidence. Topics include the use of common forensic microscopes such as compound microscopy, stereomicroscopy, and polarizing light microscopy. Students will also prepare and examine multiple types of trace evidence such as impressions, glass, hairs, biological materials, and fibers.
Graduate
  • FIS 50500 Current Issues in Forensic Science (3 cr.) Open only to graduate students in the Forensic and Investigative Sciences program. Fall. This course will discuss recent developments in forensic science including the following topics: introduction to ethics, quality assurance and control, and use of scientific evidence in the legal system.
  • FIS 50600 Advanced Forensic Microscopy (3 cr.) P: FIS 30600 Forensic Microscopy Lecture or equivalent skills with the permission of the instructor. Spring. Learn advanced techniques in the analysis of forensic microscopic evidence. Topics include review of common forensic laboratory microscopes such as, stereomicroscope, compound light microscope, and polarizing light microscope. Analysis of trace evidence with more complex use of microscopes and instrumental microscopy will include; mineral content in soil, dispersion of glass particles, physical matches of trace evidence, and polymer identification.
  • FIS 50800 Forensic Science Laboratory Management (3 cr.) Summer. This course focuses on management of forensic science laboratories: various organizational models, budgeting and common laboratory policies. Differences in the management style for public and private sector laboratories, strategies for employee recruitment, training and retention, managing workflow and maintaining compliance with accreditation bodies.
  • FIS 51100 Forensic Chemistry I (3 cr.) P: or C: FIS 50500. Fall. This course will focus on the analysis and identification of commonly abused chemicals such as ethanol, controlled substances and prescription drugs. The history, legal issues, synthesis, chemical/physical properties, and laboratory analysis of these materials will be discussed. Special topics of the students' choosing will also be included in the form of student presentations. A separate laboratory section will also be offered in which students will complete practical exercises utilizing spectroscopy, chromatography and mass spectrometry that reflect common practice in forensic science laboratories.
  • FIS 51101 Forensic Chemistry I Lab (1 cr.) P: or C: 50500 and 51100 or instructor consent. Fall. This laboratory section includes practical exercises utilizing spectroscopy, chromatography and mass spectrometry that reflect common practice in forensic science laboratories.
  • FIS 51200 Forensic Chemistry II (3 cr.) P: FIS 51100. Spring. This course will focus on the use of instrumental techniques to analyze trace evidence types such as ink, fibers, paint, adhesives, tape, ignitable liquids, and explosives. A separate lab section will include practical laboratory exercises utilizing spectroscopy, chromatography and mass spectrometry that reflect common practice in forensic science laboratories. Special topics will also include current research such as pattern recognition techniques, novel sampling methods, and provenance determination.
  • FIS 51201 Forensic Chemistry II Lab (1 cr.) P: FIS 51101 or instructor consent. P or C: FIS 51200. Spring. This laboratory section will include practical laboratory exercises utilizing spectroscopy, chromatography and mass spectrometry that reflect common practice in forensic science laboratories.
  • FIS 51500 Forensic Science and the Law (3 cr.) P: Open only to graduate students in the Forensic and Investigative Sciences program, students enrolled in the IU School of Law, or by instructor permission. Fall. Application of various laws and rules of evidence to the forensic sciences and how the admission of evidence derived from forensic sciences can impact the administration of justice in the United States. Topics include preparation for testimony, expert testimony, subpoenas, basic judicial processes, admissibility of scientific evidence.
  • FIS 52100 Forensic Biology I (3 cr.) P: or C: FIS 50500. Fall. This course is an introduction to the use of biological materials to assign identity to persons associated with a crime. The course will introduce methods for the preliminary detection of biological evidence and introduce the use of DNA. The materials learned will encompass broader topics such as immunology, molecular biology, and genetics.
  • FIS 52101 Forensic Biology I Lab (2 cr.) P: or C: FIS 52100. Fall. This laboratory section includes practical exercises that reflect common practice in forensic science laboratories, including but not limited to collection and preservation of biological evidence, presumptive and confirmatory tests, DNA extraction, and PCR amplification. Open only to graduate students in the Forensic and Investigative Sciences program or by instructor permission.
  • FIS 52200 Forensic Biology II (3 cr.) P: FIS 52100. Spring. This course is a continuation of FIS 52100 and will go into more detail about the structure of DNA, the application of molecular biology techniques for the determination of individual identity. The materials learned will encompass broader topics such as immunology, molecular biology, genetics, population genetics and statistics.
  • FIS 52201 Forensic Biology II Lab (2 cr.) P: FIS 52101. P or C: FIS 52200. Spring. This laboratory section includes practical exercises that reflect common practice in forensic science laboratories. This laboratory is a continuation of FIS 52101.
  • FIS 53000 Population Genetics (3 cr.) P: Undergraduate genetics lecture and laboratory, Undergraduate statistics. Spring. This course will serve as an introduction to the principles of population genetics. The course will cover the theory behind population genetics that includes a historical perspective to the current accepted models of population theory; examine the relationships between allele and genotype frequencies, and the fundamentals of molecular evolutionary genetics.
  • FIS 59000 Special Topics: Forensic and Investigative Sciences (1-6 cr.) Lecture or lecture/lab courses offered on topic areas that are not part of the regular M.S. ‎curriculum. These topics may include: firearms and tool marks, questioned documents, forensic ‎pathology, fingerprints, and others. They are electives in the M.S. in Forensic Sciences program.
  • FIS 59400 Internship to Forensic Science (1 - 6 cr.) The internship provides students with an opportunity to experience the workings of a practicing forensic science laboratory. Although a research project is usually the centerpiece of the internship experience, students will be given an exposure to all sections of the laboratory including case management. Students will also have an opportunity to attend a crime scene as an observer and to attend court to observe a forensic scientist offer expert testimony.
  • FIS 59700 Laboratory Project Design (6 cr.) P: FIS 50500.

    Design of a laboratory study to include a literature search, experimental plan, and final presentation. 

  • FIS 69500 Seminar (0-1 cr.) Fall, Spring. Weekly seminars presented by FIS faculty, visiting faculty and FIS graduate students. Required for graduate students admitted into the M.S. in Forensic Science Program.
  • FIS 69800 Research M.S. Thesis (1-10 cr.) P: Consent of instructor. Credit hours arranged.