|
University Graduate School 2002-2004 Academic Bulletin |
|
||||||
Vision Science
School of Optometry Bloomington
Departmental E-mail
Departmental URL
Director
Graduate Faculty
Professors
Associate Professors
Assistant Professors
Academic Advisor
Master of Science and Doctor of Philosophy
Program Information And Requirements
The Vision Science Program is designed primarily for students wishing to prepare themselves for teaching and research in the sciences that relate to vision.
Admission Requirements
Degree Requirements
Each semester, all graduate students are required to attend, and usually to participate in, the weekly School of Optometry Vision Sciences Seminar (V765). Participation implies that the seminar will be taken for credit and an expectation of an annual presentation. Students who have accumulated sufficient credit hours for graduation will not be required to register, but will be expected to continue to participate as part of the educational process.
Students commence their research training by joining an ongoing research project directed by a faculty member chosen by the student during the first few weeks in residence. The research topic will be formulated in consultation with the faculty member and an advisory committee. The topic may or may not be in the same field in which the student expects to do dissertation research.
Completion of the competency course requirement provides students with a breadth of knowledge. In addition, both the master's and doctoral programs require that students identify an area of focus in which they will complete their research. The area can be chosen from any basic or clinical area in which our research faculty have active research programs. These include visual optics, ocular physiology, contact lenses, myopia development, low vision, invertebrate receptor cell biology, psychophysical studies of normal and abnormal vision, low vision, ocular disease, and pediatric optometry.
Course Requirements
Research Requirements
Thesis
Course Requirements
Because students are expected to read the important literature in their chosen field, study of a foreign language may be required by the student's advisory committee.
Students who hold recent optometric degrees from recognized institutions or who are enrolled concurrently in the O.D. and Ph.D. programs may accelerate progress by receiving graduate credit for relevant work completed in the optometry curriculum. In regard to credit for prior or concurrent O.D. work and/or credit for certain competency courses (see Competency Courses), no more than 6 credit hours may apply to the requirement of 30 didactic credit hours.
Minor Subject
Qualifying Examination
General V595 First-Year Research (1-5 cr.)* Required to complete with a grade of A-F within the first year.
V695 Second-Year Research (1-5 cr.)
V700 Introduction to Vision Science I (4 cr.) The first of a two-semester sequence of courses that provides a comprehensive introduction to vision science. The course is designed for graduate students enrolled in the Vision Science Program, but is also suitable for students from other disciplines who are interested in the eye and vision.
V701 Introduction to Vision Science II (4 cr.) The second of a two-semester sequence of courses on vision science. V700 and this course constitute a breadth requirement for Ph.D. students in Vision Science.
V703 Refractive Anomalies I (3 cr.) Optics and epidemiology of refractive anomalies of the human eye.
V704 Refractive Anomalies II (3 cr.) Development, progression, and management of myopia.
V705 Ocular Surface I: Basic Biology and Physiology (4 cr.) Basic biology and physiology of the ocular surface, including the cornea, conjunctiva, and tear film.
V706 Ocular Surface II: Current Issues (4 cr.) Current issues affecting the ocular surface, including contact lenses, disease, and surgery.
V707 Clinical Vision Research Techniques Course (1-6 cr.) Techniques and procedures used to record and quantify ocular function and changes in clinical research including ocular photography, digital imaging, corneal ad retinal topography, confocal microscopy, endothelial microscopy, image processing, surface cell analysis.
V716 The Visual Pathways (4 cr.) P: permission of the instructor. For students in the visual sciences, comprehensive study of the human optic pathways.
V717 Noninvasive Assessment of Visual Function (3 cr.) Focuses on the clinical application of psychophysical techniques for the detection and diagnosis of visual anomalies and ocular disease.
V718 Visual Functions in Low Vision (3 cr.) Studying behavioral aspects of visual function measurements in the low-vision population.
V723 The Eye as an Optical Instrument (4 cr.) P: V663 or equivalent.
V754 The Motility of the Eye (4 cr.) P: V665 or equivalent. Quantitative and qualitative study of eye movements and myologic reflexes, monocular and binocular, and related phenomena.
V764 Cellular and Molecular Aspects of Ocular Disease and Injury (4 cr.) Study of selected reports dealing with corneal-wound healing, the cataractous lens, and retinal degenerations.
V765 Vision Sciences Seminar (1 cr.) Students in the Ph.D. program in Vision Science are required to take this seminar and make a presentation annually.
V767 Electrophysiology of Vision (3 cr.) Review of techniques of recording neural events, development of a neural hypothesis, experimental testing of hypothesis, writing and presenting of data and conclusions.
V768 Special Topics in Vision Science (1-4 cr.) Covers topics not offered on a regular basis. Possible topics include cell and molecular biology as it relates to the eye and vision, comparative studies of the vertebrate eye, current research, experimental design, optical and ophthalmic instruments, pathology, and pharmacology. May be taken more than once when different topics are covered.
V773 Classics in Physiological Optics (1 cr.) Study of selected scientific articles of early contributors to our understanding of ocular motility, monocular and binocular functions, the optics of the eye, and ocular physiology.
V783 Monocular Sensory Aspects of Vision (4 cr.) P: V664 or equivalent. Analysis of visual stimulus and its perception in color, form, brightness, motion, etc.
V784 Binocular Sensory Aspects of Vision (4 cr.) P: V666 or equivalent. A study of perceptual phenomena and responses facilitated by binocular vision.
V785 The Vertebrate Eye (3 cr.) Comparative anatomy of the vertebrate retina. Primate retina used as a model. Accommodative mechanisms discussed. Laboratory exercises required.
V791 Quantitative Methods for Vision Research (3 cr.) Introduction to communication theory approach to problems in vision. Topics include the sensory nerve code, representation of nerve messages by orthogonal functions, sampling theorem, linear filters, Fourier analysis in one and two dimensions, analysis of directional data, stochastic processes, and signal detection theory.
V795 Third-Year Research (3 cr.)
V799 M.S. Thesis Research (1-10 cr.)
V801 Basic Experimental Design and Methods in Vision Science (3 cr.) An introduction to basic research skills in vision science.
V899 Ph.D. Dissertation Research (1-12 cr.)
Doctor of Optometry Curriculum Courses
V512 Ocular Anatomy (2 cr.) P: V511 Human Gross Anatomy, or equivalent. A detailed study of the normal anatomy and embryology of the eye and its adnexa. The organization of various components of the eye is studied at the light and electron microscopic level and this organization is related to the molecular structure where it is known.
V514 Neuroanatomy (1.5 cr.) P: V511 Human Gross Anatomy, or equivalent. Functional anatomy of the human brain, with emphasis on the visual system.
V516 Ocular Physiology (2.5 cr.) C: V512 or equivalent. Vegetative physiology of the eye, with attention to the chemical constitution, intermediary metabolism, regulation of hydration and intraocular pressure, transparency of the ocular components, and retinal physiology.
V648 Neurophysiology of Vision (1 cr.) Introduction to the functional organization of the visual system and the physiological basis of vision. This course treats the visual system as a biological image processor to reveal how the structure and function of the retina and brain determine visual performance and constrain the quality of vision.
V663 Physiological Optics I: Visual Optics (3.5 cr.) P: V522 Geometric Optics II, or equivalent. The eye as an optical instrument.
V664 Physiological Optics II: Visual Function (2.5 cr.) The basic aspects of monocular vision, including light and dark adaptation, color vision, and both spatial and temporal resolution. The science of measuring visual performance and its application to clinical optometry.
V665 Physiological Optics III: Ocular Motility (3.5 cr.) Characteristics, control, and deficits of the five somatic eye-movement systems (convergence, saccadic version, pursuit version, fixation maintenance, vestibular reflex) and the autonomic systems subserving accommodation and pupillary diameter reflexes.
V666 Physiological Optics IV: Binocular Function (2.5 cr.) Binocular sensory mechanisms of vision. Summary of the geometry of three-dimensional space and stereo vision, underlying neuroanatomy and physiology of binocular vision, prerequisites for normal stereopsis, and commonly encountered anomalies of binocular vision.
Every student must demonstrate graduate-level competency in three of the five areas listed below. The asterisk (*) denotes Doctor of Optometry curriculum courses.
Visual Anatomy
Visual Optics
Visual Physiology and Biochemistry
Monocular Visual Function
Ocular Motility
Biology
Psychology
| ||||||||
Office of Creative Services
Poplars 721
400 East Seventh Street
Bloomington, IN 47405-3085
(812) 855-1162
Submit Questions or Comments
Copyright ,,
The Trustees of Indiana University