Biochemistry, InterdisciplinaryBloomington Program College of Arts and Sciences Director Departmental E-mail Departmental URL Graduate Faculty Graduate Faculty(An asterisk [*] denotes associate membership in University Graduate School faculty.) Carlos Miller Chair Clyde Culbertson Professor of Biology Lilly Chemistry Alumni Chair Linda and Jack Gill Chairs of Biomolecular Sciences Robert and Marjorie Mann Chair Distinguished Professors Professors Associate Professors Assistant Professors Graduate Advisor Degrees OfferedMaster of Science and Doctor of Philosophy Special Program Requirements(See also general University Graduate School requirements.) Admission Requirements Master of Science DegreeCourse Requirements Thesis Final Examination Doctor of Philosophy DegreeCourse Requirements Minor Qualifying Examinations Final Examination Ph.D. Minor in Biochemistry CoursesBiochemistryB501 Integrated Biochemistry (4.5 cr) P: Undergraduate biochemistry (equivalent to C483 or C484) or consent of instructor. Basic principals and methodologies of biochemistry; essentials of macromolecular biosynthesis; mechanism-based examination of biochemical aspects of cell biology; material is presented with an integrative approach designed to illustrate the inter-relationship of biochemical processes. B502 Analysis of Biochemical Literature (1.5 cr.) P: Concurrent enrollment in B501 or consent of instructor. Critical evaluation of the biochemical literature, using selected papers as examples; development of written and oral communication skills in the context of literature analysis. B503 Macromolecular Structure and Interaction (3 cr.) P: B501 or undergraduate biochemistry (equivalent to C483 or C484), one semester of undergraduate organic chemistry (equivalent to C341) or consent of instructor. Undergraduate (bio)physical chemistry (equivalent to C481 or C361) is strongly recommended. Principals of inter-and intra-molecular interactions; structural stability of proteins and nucleic acids; thermodynamic and kinetic analysis of complex binding; experimental methods for analysis of macromolecular structure and binding. B504 Biomolecular Catalysis (3 cr.) P: Undergraduate organic chemistry (equivalent to C342), undergraduate biochemistry (equivalent to C483 or C484) or consent of instructor. Theory and analysis of biochemical catalysis; enzyme kinetics; cofactors; regulation of enzymatic reactions. B580 Introduction to Biochemical Research (3 cr.) P: graduate standing. Objectives and techniques of biochemical research. B600 Seminar in Biochemistry (1 cr.) P: B502 or consent of instructor. Advanced critical analysis of the current scientific literature and scientific presentations. Attendance and participation in the weekly Biochemistry Program seminar series is required. B601 Advanced Nucleic Acid Biochemistry (1.5 cr.) P: B501 or consent of instructor. Mechanistic analysis of nucleic acid metabolism; specificity and role of DNA polymerases and repair pathways; DNA replication and recombination mechanisms; RNA structural motifs and physical properties; RNA synthesis and processing in gene expression; catalytic RNA molecules; applications of RNA molecules. B602 Advanced Protein Biosynthesis and Processing (1.5 cr.) P: B501 or consent of instructor. Detailed analysis of protein synthesis, post-translational modification, and macromolecular assembly, including the role these modifications play in mature protein function; byosynthesis, structure, function, and analysis of complex oligosaccharides. B603 Advanced Macromolecular Structure and Interactions (1.5 cr.) P: B503 or consent of instructor. Supplements and extends B503: emphasis on stability and folding mechanisms of proteins and nucleic acids and detailed thermodynamic analysis of binding interactions. B604 Structural Methods (1.5 cr.) P: B503 or consent of instructor. Fundamental principles of circular dichroism, nuclear magnetic resonance and X-ray crystallography in the study of protein and nucleic acid structures. Theoretical and practical aspects will be presented, with particular emphasis on application strategies. B605 Structure and Function of Biological Membranes (1.5 cr.) P: B501, B503 or consent of instructor. Biochemistry and biophysics of lipids, membranes and membrane proteins; fundamentals of membrane transport; interfacial catalysis; transmembrane signal transduction. B680 Special Topics in Biochemistry (1.5-3 cr.) P: Consent of instructor. Topics vary yearly and include the following: Physico-chemical techniques in the study of macromolecules; experimental methods in enzymology; organic chemistry of enzymatic reactions and enzyme models; conformational properties and macromolecules. Can be retaken for credit. B880 Research: Biochemistry (cr. arr.)** Cross-Listed CoursesBiologyL529 Bioinformatics in Molecular Biology and Genetics: Practical Applications (4 cr.) P: I501, I502, L519 or consent of instructor. Practical experience in a range of data analysis and software engineering methods applied to molecular biology data. L585 Molecular Genetics (3 cr.) P: L364 and C483 or equivalent. The molecular basis of genetic interactions, with emphasis on microbial systems. The course covers the molecular mechanisms of mutation, suppression, recombination, complementation, etc., as well as mechanisms for gene transfer in bacteria and bacteriophage. The application of genetic analysis to a variety of molecular biological topics is emphasized. L586 Molecular Analysis of Cell Biology (3 cr.) Critical analysis of recent advances in our understanding of molecular organization of cellular structures and of their mode of function. The primary interest of this course concerns the eukaryotic cell. M525 Topics in Microbial Biochemistry and Physiology (3 cr.) P: graduate standing and C483 or M350 or equivalent. The course will consider topics in physiology and biochemistry of eukaryotic and prokaryotic microorganisms. Subjects include membrane physiology and regulatory networks in metabolism and gene expression. ChemistryC615 Bioanalytical Chemistry (1.5-3 cr.) P: C511, C512. Survey of modern analytical techniques, including spectrochemical, electrochemical, and separation methods used in biochemical analysis and their applications. (May be given in alternate years). C632 Structure, Function, and Spectroscopy of Metal Ions in Biological Systems (3 cr.) Introduction to the field of bioinorganic chemistry and spectroscopic methods for determining structure/function relationship of metal ions in biology. Emphasis on oxygen carriers, metal ion transport and storage, as well as oxidoreductases involved in oxygen, hydrogen and nitrogen metabolism. A discussion of electron transfer proteins, photosystems, and the role of metals in medicine will also be included. Medical SciencesB801 Molecular and Cellular Biochemistry (3 cr.) P: Graduate standing and consent of instructor. Biochemistry for medical students, emphasizing structure-function relationships of cellular components, biosynthesis of nucleic acids and proteins, degradation of simple and complex cell constituents, and regulation of cell growth. B802 Metabolism and Signal Transduction (3 cr.) P: Graduate standing and consent of instructor. Biochemistry for medical students, including signaling pathways, membrane biochemistry, and the metabolism of macromolecules in health and disease with emphasis on clinical applications. PhysicsP575 Introductory Biophysics (3 cr.) P: Two out of three from the following: (1) P221/P222 and P301 or equivalent, (2) C105/C106 or equivalent, and (3) L221 and L312 or equivalent; or consent of instructor. Overview of cellular components; basic structures of proteins, nucleotides, and biological membranes; solution physics of biological molecules, mechanics and motions of biopolymers; physical chemistry of binding affinity and kinetics; physics of transport and signal transduction; biophysical techniques such as microscopy and spectroscopy; mathematical modeling of biological systems. Neural SciencesN612 Ion Channels and Receptors (3 cr.) P: Graduate status and consent of instructor. Molecular, biophysical, and biochemical analysis of the major molecules responsible for neural excitability and synaptic transmission: receptor-coupled ion channels, voltage-dependent ion channels, G-protein coupled receptors, transporters, signal transduction pathways, synaptic vesicle-associated proteins, cytoskeletal proteins, classical and novel neurotransmitters and modulators.
|
||||||||
Last updated: 07 January 2025 11 02 04
Submit Questions or Comments