School of Science

Welcome to the Purdue School of Science!

The School of Science offers undergraduate and graduate programs that prepare students for a variety of careers. As part of its instructional mission, the school also provides non-science majors with the scientific background to help them become more aware and better-informed consumers and citizens. Scientists advance the boundaries of our knowledge of the natural world through applied and basic research. Science benefits society by providing fundamental knowledge and technical advances in such areas as health, ecology, computer and software design, mathematical modeling, and chemistry. Science informs the social sciences with scientific understanding of psychology, applications of statistics, and an understanding of environmental issues. Science contributes to the arts and humanities by offering knowledge of the physical universe and the symmetry and wonder of nature.

In addition to preparing students for science-related careers and for advanced study in graduate school, an undergraduate program in one of the sciences is an excellent background for professional study in medicine (including veterinary medicine), dentistry, business administration, law, and areas of the social sciences where quantitative methods are important.

Overview

An education in the sciences also opens the door to employment in the high-tech industry in sales and management.

Supplementing the full-time instructional staff, with ranks ranging from instructor through full professor, is a contingent of well-qualified, experienced lecturers who are recruited from the reserve of talent existing in the Indianapolis area.

An education in the sciences also opens the door to employment in the high-tech industry in sales and management.

Supplementing the full-time instructional staff, with ranks ranging from instructor through full professor, is a contingent of well-qualified, experienced lecturers who are recruited from the reserve of talent existing in the Indianapolis area.

Mission

The School of Science offers undergraduate and graduate programs that prepare students for a variety of careers. As part of its instructional mission, the school also provides non-science majors with the scientific background to help them become more aware and better-informed consumers and citizens. Scientists advance the boundaries of our knowledge of the natural world through applied and basic research. Science benefits society by providing fundamental knowledge and technical advances in such areas as health, ecology, computer and software design, mathematical modeling, and chemistry. Science informs the social sciences with scientific understanding of psychology, applications of statistics, and an understanding of environmental issues. Science contributes to the arts and humanities by offering knowledge of the physical universe and the symmetry and wonder of nature.

In addition to preparing students for science-related careers and for advanced study in graduate school, an undergraduate program in one of the sciences is an excellent background for professional study in medicine (including veterinary medicine), dentistry, business administration, law, and areas of the social sciences where quantitative methods are important.
An education in the sciences also opens the door to employment in the high-tech industry in sales and management.

Supplementing the full-time instructional staff, with ranks ranging from instructor through full professor, is a contingent of well-qualified, experienced lecturers who are recruited from the reserve of talent existing in the Indianapolis area.

Centers of Research Excellence in the School of Science

- Assertive Community Treatment Center of Indiana
- Center for Biocomputing
- Center for Earth and Environmental Science (CEES)
- Center for Mathematical Biosciences
- Center for Membrane Biosciences
- Center for Nuclear Magnetic Resonance
- Center for Regenerative Biology and Medicine
- Center for Visual Information Sensing and Computing
- Nanoscale Imaging Center

Degree and Certificate Programs in the School of Science

The School of Science at Indiana University–Purdue University Indianapolis awards students degrees from both Purdue University (PU) and Indiana University (IU). This list shows all the degrees awarded and the institution granting the degree.

Biology

- Bachelor of Arts - PU
- Bachelor of Science - PU
- Master of Science - PU
- Doctor of Philosophy - PU

Biotechnology

- Bachelor of Science - PU

Chemistry

- Bachelor of Arts - PU
- Bachelor of Science - PU
- Master of Science - PU
- Doctor of Philosophy - PU

Computer and Information Science

- Bachelor of Science - PU
- Master of Science - PU
- Doctor of Philosophy - PU

Environmental Science

- Bachelor of Science - IU

Forensic and Investigative Sciences

- Bachelor of Science - PU
- Master of Science - PU

Geology

- Bachelor of Arts - IU
- Bachelor of Science - IU
- Master of Science - IU

- Master of Science - IU

Interdisciplinary Studies

- Bachelor of Science - PU

Mathematical Sciences

- Bachelor of Science - PU
- Master of Science - PU
 - Pure/Applied Math
 - Applied Statistics
 - Math Education

- Doctor of Philosophy (Mathematics) - PU
- Doctor of Philosophy (Biostatistics) - IU

Physics

- Bachelor of Science - PU
- Bachelor of Science (Physics) / Bachelor of Science (Electrical Engineering) dual degree program - PU
- Bachelor of Science (Physics) / Master of Science (Mechanical Engineering) dual degree program - PU
- Master of Science - PU
- Doctor of Philosophy - PU

Psychology

- Bachelor of Arts - PU
- Bachelor of Science - PU
- Master of Science - PU
 - Industrial/Organizational (I/O) Psychology
 - Clinical Rehabilitation Psychology

- Doctor of Philosophy in Clinical Rehabilitation Psychology - PU
- Doctor of Philosophy - PU

Several departments participate in the joint M.D.-Ph.D. program with the Indiana University School of Medicine. In this program students concurrently earn an Indiana University Doctor of Medicine degree and a Ph.D. degree in the School of Science.1,2

1. Purdue University Ph.D. Programs, pursued at IUPUI, arranged through Purdue, West Lafayette.
2. Indiana University Ph.D. Programs, pursued at IUPUI, in departments or programs of the Indiana University School of Medicine in which School of Science faculty hold adjunct appointments.
3. Indiana University Ph.D. program, pursued at IUPUI, in collaboration with the Division of Biostatistics in the IU School of Medicine.

Certificate Programs in the School of Science (PU)

The School of Science at Indiana University–Purdue University Indianapolis also awards Purdue University (PU) certificates.

Computer and Information Science

Undergraduate

- Certificate in Applied Computer Science

Graduate

- Certificate in Biocomputing
• Certificate in Biometrics
• Certificate in Computer Security
• Certificate in Databases and Data Mining
• Certificate in Software Engineering

Bulletin Designation and Program Planning

Bulletin Designation
All colleges and universities establish certain academic requirements that must be met before a degree is granted. These regulations concern such things as curricula and courses, majors and minors, and campus residence. Advisors, directors, and deans will aid students in meeting these requirements, but students are responsible for fulfilling them. At the end of the course of study, the faculty and the Board of Trustees vote on the conferring of degrees. If requirements have not been satisfied, degrees will be withheld pending satisfactory completion of these requirements. For this reason, students need to acquaint themselves with all regulations and to remain informed throughout their university career.

This bulletin lists the requirements and regulations in effect for students who are admitted to the School of Science in August 2010 (Fall semester). Students who enter after this date may be subject to different requirements; students who entered before August 2010 may elect to follow the graduation requirements that were in effect at the time of their admission to their degree program or the graduation requirements that became effective thereafter. However, the requirements chosen must be from only one bulletin. If a student has not completed a bachelor’s degree program within eight years of admission, the student may be obliged by the major department to meet the requirements of a subsequent bulletin. Additionally, students in good standing who have not been enrolled at the university for two or more consecutive years must satisfy the requirements of the School of Science bulletin in effect upon their return.

Program Planning and Advising Guidelines
The experience of academic advisors and of successful students suggests the following guidelines for effective planning of undergraduate programs:

• Students should be thoroughly familiar with all academic requirements that must be met before a degree is granted.
• Students should seek appointments with academic advisors in their major departments before the dates established by the university calendar for registration. In such conferences students should, as a minimum objective, make certain that they review their degree requirements and that they have made an appropriate plan for the next semester.
• Each student should understand that the responsibility for determining an appropriate academic program and for meeting every degree requirement rests with the student; faculty or staff members acting in the capacity of advisors are obligated only to assist students in meeting this responsibility. Any student who needs clarification of any of the requirements for the degree program is urged to obtain this clarification from an academic advisor or from the School of Science, Science Building, Room 222, phone (317) 274-0625.

Contact Information
The School of Science
IUPUI
Science Building, LD 222
402 N. Blackford Street
Indianapolis, IN 46202-3276
Phone: (317) 274-0625
Fax: (317) 274-0628
E-mail: science@iupui.edu

Contacts for Academic/Student Services
Marcy K. Carlson
Pre-Professional Advisor
E-mail: mkcarlso@iupui.edu
Kathleen A. Marrs
Associate Dean
Academic Affairs
E-mail: kmarrs@iupui.edu
James M. Murphy
Associate Dean
Research and Graduate Education
E-mail: jmurphy1@iupui.edu
Melissa L. Pohlman
Director of Student Services
E-mail: mpohlman@iupui.edu
Joseph L. Thompson
Executive Director of Academic Affairs
E-mail: jthomp@iupui.edu
Jeffrey X. Watt
Associate Dean
Student Affairs and Outreach
E-mail: jwatt@math.iupui[dot]edu

Admission
All students entering the School of Science must have been officially admitted to the university by the IUPUI Undergraduate Admissions Center, Campus Center, Room 255, 420 University Blvd., Indianapolis, IN 46202. Further information and application forms may be obtained at this address, by calling (317) 274-4591, or on the Web at www.enroll.iupui.edu.

Applicants should be aware that, under Indiana law, criminal convictions might result in ineligibility for admission to certain programs at IUPUI. For the School of Science, criminal convictions may also result in ineligibility for enrollment in certain courses or participation in certain projects. Questions regarding school policy on such matters should be addressed to the associate dean for Faculty Affairs and Undergraduate Education.

International Students
International students seeking admission to the School of Science at IUPUI must submit the international application for admission, which is available online from the IUPUI Office of International Affairs at www.international.iupui.edu. Additional information can be obtained at IUPUI Office of International Affairs, 902 W.
Undergraduate Requirements

Beginning Students

Students entering IUPUI directly from high school should file their applications for admission early in their senior year.

Acceptance to the university as a new student is influenced by several factors. The Undergraduate Admissions Center is guided by the following:

- The applicant should be a high school graduate or be scheduled to graduate before enrolling at IUPUI.
- The extent to which the student meets or exceeds the minimum subject requirements indicated below is considered. For admission to the School of Science, the student’s record should include the following course work:

<table>
<thead>
<tr>
<th>Subjects</th>
<th>Semesters</th>
</tr>
</thead>
<tbody>
<tr>
<td>English</td>
<td>8</td>
</tr>
<tr>
<td>History and Social Science</td>
<td>6</td>
</tr>
<tr>
<td>Algebra</td>
<td>4</td>
</tr>
<tr>
<td>Geometry</td>
<td>2</td>
</tr>
<tr>
<td>Trigonometry</td>
<td>1-2</td>
</tr>
<tr>
<td>Laboratory Science</td>
<td>6 (including chemistry and biology)</td>
</tr>
<tr>
<td>Combination of foreign language, additional mathematics, laboratory science, social science, or computer science courses</td>
<td>6-7</td>
</tr>
</tbody>
</table>

Applicants to the School of Science are strongly encouraged to complete AP science and mathematics courses if available at their high school. Applicants considering majors in physics or chemistry are encouraged to complete a calculus course in high school.

In planning high school electives, the curricula of the various departments of the School of Science contained in this bulletin should be reviewed. Departmental advisors will be glad to help with planning for admission.

- All applicants are required to take the Scholastic Aptitude Test (SAT) or the American College Test (ACT). IUPUI requires that the writing section of the test also be completed. It is recommended that these tests be taken in the spring of the junior year in high school or fall of the senior year.

The Undergraduate Admissions Center will examine your high school transcript and standardized test scores to determine both your admission to the university and your acceptance to the School of Science.

Students should declare a major when applying for admission so a departmental advisor can be assigned.

Transfer Students

From IUPUI Schools, Indiana University Campuses, and Purdue University Campuses

Prospective transfer students should have a minimum grade point average of 2.0 on a 4.0 scale, meet the requirements of the department they wish to enter, and be in good disciplinary standing. In order to be accepted for admission to the School of Science, students must first provide the materials indicated below.

- An IUPUI or other Indiana University campus student should file a record change form, which may be obtained from the School of Science or the student’s current school. The form is also available online at www.enroll.iupui.edu.
- A Purdue University campus student must make an official application through the IUPUI Undergraduate Admissions Center at www.enroll.iupui.edu.

From Other Colleges and Universities

Students who have earned transfer credit for 12 credit hours and have a minimum cumulative grade point average of 2.0 on a 4.0 scale from other institutions may be considered for admission to the School of Science. Admittance to the school is contingent upon acceptance into a departmental program. Students should submit the following with their application for admission to the IUPUI Undergraduate Admissions Center:

- a copy of their high school record showing satisfactory completion of entrance requirements; students with less than 26 hours of transfer work must present SAT or ACT scores.
- an official transcript of work completed in each institution previously attended
- evidence of good academic and disciplinary standing at the institution last attended

The Undergraduate Admissions Center evaluates credit from other institutions, and the major department and the School of Science determine its applicability toward degree requirements in the School of Science.

A marginal applicant may be granted admission, admitted on probation, or have admission denied.

Transfer Credit

The student’s major department and the School of Science determine acceptability of transfer credits from another college or university to the School of Science.

From IUPUI to Other Indiana University and Purdue University Campuses

Students transferring from IUPUI to other Indiana University and Purdue University campuses should consult the appropriate departments at those campuses about equivalence of courses.

Graduate Requirements

To be considered for admission, a candidate must have a bachelor’s degree from an accredited institution and must show promise of ability to engage in advanced work and evidence of adequate preparation to pursue graduate study in the field chosen. The minimum standard for unconditional admission to the graduate school is a graduation grade point average of 3.0 (B) or the
equivalent. An applicant not meeting these requirements should take the aptitude tests section of the Graduate Record Examination (GRE). Individual departments may set higher grade point requirements and may require the submission of additional evidence of academic performance, such as GRE scores.

A minimal score of 550 on the Test of English as a Foreign Language (TOEFL) paper version/PBT or a minimal score of 213 on the TOEFL computer-based version/CBT is required for admission to the graduate school for applicants whose native language is not English. Departments may set higher requirements. Applicants in the Indianapolis area may substitute the IUPUI English as a Second Language (ESL) Placement Examination for the TOEFL. Information about this test is available from the Office of International Affairs online at http://international.iupui.edu/.

Application should normally be made at least six months before the beginning of the session in which the student wishes to enroll. However, please refer to the specific academic program for admission deadlines. Late applications may also be accepted. Applicants will be advised of the action taken on their applications by the Dean of the Purdue University Graduate School. Applications to the Department of Earth Sciences will be considered by the Department of Earth Sciences and forwarded to the IUPUI office of the Indiana University Graduate School; applicants will be notified of the results by the graduate advisor in the Department of Earth Sciences.

Qualified students may be authorized to pursue a Ph.D. degree at IUPUI in areas where a program has been arranged with Purdue, West Lafayette, or the Indiana University School of Medicine. For further details, contact the department in which study is desired.

Applicants should be aware that, under Indiana law, criminal convictions might result in ineligibility for admission to certain programs at IUPUI. For the School of Science, criminal convictions may also result in ineligibility for enrollment in certain courses or participation in certain projects. Questions regarding school policy on such matters should be addressed to the Associate Dean for Faculty Affairs and Undergraduate Education.

Financial support in the form of teaching and research assistantships is available through the departments of the School of Science. Students who want to be considered for IUPUI fellowships must submit GRE (verbal/quantitative/analytic) scores. Area examination scores may be submitted for consideration.

Degree-Seeking Graduate Student Application

Application to all graduate programs must be made by electronic applications accessible through the School of Science Web site (www.science.iupui.edu). Application fees are submitted online at the time of application. If necessary, paper applications may be obtained from each department.

Applicants must submit complete, official transcripts of all previous college and university studies and three letters of academic reference for evaluation by the major department.

Non Degree Students

Undergraduate Nondegree Program

Students who hold a bachelor's degree from IUPUI or another university may register at IUPUI as Undergraduate Nondegree students. This enrollment status is desirable for students who need to take a small number of undergraduate courses in order to apply for medical school or other professional programs in, for example, dentistry, occupational therapy, optometry, pharmacy, physical therapy, and veterinary medicine. Students enrolled as undergraduate nondegree pay undergraduate tuition and fees, but may only register for undergraduate courses.

Undergraduate nondegree students who enroll in graduate courses may be administratively withdrawn from these courses and may forfeit tuition and associated fees. Undergraduate nondegree students may seek academic advising through the School of Science. Students enrolled as undergraduate nondegree are eligible for Stafford loans only, provided they have not used up their undergraduate financial aid eligibility. They may also seek loans or support through banks or other financial institutions. Students enrolled as undergraduate nondegree are not eligible for other forms of financial aid through IUPUI.

Graduate Nondegree Program

Students normally use the graduate nondegree classification whose intent is to take course work for personal improvement. A student who wishes to become a candidate for an advanced degree should consult with the chosen major department at the time of application for admission as a graduate nondegree student. The major department will advise applicants of the procedure for obtaining status as a degree-seeking student. An application to become a graduate nondegree student is obtained through the IUPUI Graduate Office at the following Web site: http://www.iupui.edu/~gradoff/gnd/.

No more than 12 hours of credit earned under this classification may be used on a plan of study for a Purdue University degree program without approval of the major department and the Purdue University Graduate School. Similarly, not more than 9 hours of credit earned under this classification may be used in a plan of study for an Indiana University degree program without approval of the major department.

Courses

Astronomy

AST–A 100 The Solar System (3 cr.)
Fall. Survey of the solar system, including the Earth, sun, moon, eclipses, planets and their satellites, comets, laws of planetary motion, etc. Discussion of the origin of the solar system, life on earth, and the possibilities of extraterrestrial life. Also astronomical instruments and celestial coordinates.

AST–A 105 Stars and Galaxies (3 cr.)
BIOL 55700 Physiology II (3 cr.)

BIOL 55600 Physiology I (3 cr.)
P: K322, CHEM C342. Fall, odd years, night. Laboratory experience in techniques applicable to biotechnology: protein chemistry, molecular biology, and immunology.

BIOL 55000 Plant Molecular Biology (3 cr.)
P: K322, CHEM C342, or consent of instructor. Fall, night. Principles of physiology: nerve and muscle, temperature regulation, ion and water balance.

BIOL 54800 Techniques in Biotechnology (3 cr.)
P: K322, CHEM C342, or consent of instructor. Fall, day. Laboratory experience in techniques applicable to biotechnology: protein chemistry, molecular biology, and immunology.

BIOL 54000 Topics in Biotechnology (3 cr.)
P: K322 and CHEM C341, or consent of instructor. Fall, night. Examines research techniques and applications for several technologies situated at currently recognized biological frontiers, including recombinant DNA technology, hybridoma technology, protein engineering, agricultural research, and microbiological engineering.

BIOL 53000 Introductory Virology (3 cr.)
P: K356, CHEM C342. Fall, odd years, night. Detection, titration, and chemistry of viruses; viral host interactions: bacteriophage-bacterium, animal virus-animal cell, plant virus-plant cell; tumor viruses: infection and transformation.

BIOL 52400 Developmental Neurobiology (3 cr.)
P: consent of instructor. Fall, odd years, night. The major phases of nervous system development beginning with neurulation and neurogenesis and ending with the onset of physiological activity will be studied in a variety of animals, mainly avians and mammals (including man). Neural developmental disorders and behavioral ontogeny will also be considered.

BIOL 52300 Biological Membranes (3 cr.)
P: CHEM C342 or consent of instructor. Spring, night. An examination of structure and function of biological membranes. Topics include lipid and protein composition and interactions, physiological properties of membranes, physiological methods of analysis, model membrane systems, and survey of specific biological membranes and their modes of action.

BIOL 52100 Developmental Biology (3 cr.)
P: K322. Fall. Principles of animal development. The emphasis is on concepts and underlying mechanisms of developing and regenerating systems and stem cell properties, including molecular and biochemical approaches.

BIOL 51600 Molecular Biology of Cancer (3 cr.)
P: CHEM C342 or consent of instructor. Spring, night. Examines how key regulatory genes and molecular signaling pathways regulate development in both lower eukaryotic organisms and mammalian organ systems, with emphasis on the function and evolution of signaling molecules and transcription factor superfamilies.

BIOL 51400 Molecular Genetics of Development (3 cr.)
P: K322 or similar or consent of instructor. R: BIOL 566. Spring, day, night. Examines how key regulatory genes and molecular signaling pathways regulate development in both lower eukaryotic organisms and mammalian organ systems, with emphasis on the function and evolution of signaling molecules and transcription factor superfamilies.

BIOL 51000 Immunology (3 cr.)
P: K103, CHEM C341. Spring, night. Introduction to basic principles and experimentation in cellular and humoral immunology.

BIOL 50700 Principles of Molecular Biology (3 cr.)
P: K322 or consent of instructor. Spring, day. Principles of molecular biology and plant molecular genetics. Topics will include the structure and expression of plant nuclear, chloroplast, and mitochondrial genomes, and plant viruses.

AST–A 130 Short Courses in Astronomy (1 cr.)

Five-week short courses on a variety of topics in astronomy. Examples of topics include: the Big Bang, Black Holes, Astronomy from your Backyard, How to See Stars, and The Birth and Death of Our Sun.

Biology

Advanced Undergraduate and Graduate Level

BIOL 55900 Endocrinology (3 cr.)
P: 556 or equivalent, and CHEM C342. Fall. The study of hormone function. Consideration will be given to the role of hormones in growth, development, metabolism, homeostasis, and reproduction.

BIOL 55600 Developmental Biology (3 cr.)
P: K322. Fall. Principles of animal development. The emphasis is on concepts and underlying mechanisms of developing and regenerating systems and stem cell properties, including molecular and biochemical approaches.

BIOL 55500 Plant Molecular Biology (3 cr.)
P: K322, CHEM C341, or consent of instructor. Fall, day. Principles of plant molecular biology and plant molecular genetics. Topics will include the structure and expression of plant nuclear, chloroplast, and mitochondrial genomes, and plant viruses.

BIOL 55400 Molecular Genetics of Development (3 cr.)
P: K322 or similar or consent of instructor. R: BIOL 566. Spring, day, night. Examines how key regulatory genes and molecular signaling pathways regulate development in both lower eukaryotic organisms and mammalian organ systems, with emphasis on the function and evolution of signaling molecules and transcription factor superfamilies.

BIOL 55300 Introductory Virology (3 cr.)
P: K356, CHEM C342. Fall, odd years, night. Detection, titration, and chemistry of viruses; viral host interactions: bacteriophage-bacterium, animal virus-animal cell, plant virus-plant cell; tumor viruses: infection and transformation.

BIOL 54800 Techniques in Biotechnology (3 cr.)
P: K322 and CHEM C341, or consent of instructor. Fall, day. Laboratory experience in techniques applicable to biotechnology: protein chemistry, molecular biology, and immunology.

BIOL 54000 Topics in Biotechnology (3 cr.)
P: K322 and CHEM C341, or consent of instructor. Fall, night. Examines research techniques and applications for several technologies situated at currently recognized biological frontiers, including recombinant DNA technology, hybridoma technology, protein engineering, agricultural research, and microbiological engineering.

BIOL 53000 Introductory Virology (3 cr.)
P: K356, CHEM C342. Fall, odd years, night. Detection, titration, and chemistry of viruses; viral host interactions: bacteriophage-bacterium, animal virus-animal cell, plant virus-plant cell; tumor viruses: infection and transformation.

BIOL 52400 Developmental Neurobiology (3 cr.)
P: consent of instructor. Fall, odd years, night. The major phases of nervous system development beginning with neurulation and neurogenesis and ending with the onset of physiological activity will be studied in a variety of animals, mainly avians and mammals (including man). Neural developmental disorders and behavioral ontogeny will also be considered.

BIOL 52300 Biological Membranes (3 cr.)
P: CHEM C342 or consent of instructor. Spring, night. An examination of structure and function of biological membranes. Topics include lipid and protein composition and interactions, physiological properties of membranes, physiological methods of analysis, model membrane systems, and survey of specific biological membranes and their modes of action.

BIOL 52100 Developmental Biology (3 cr.)
P: consent of instructor. Fall, odd years, night. The major phases of nervous system development beginning with neurulation and neurogenesis and ending with the onset of physiological activity will be studied in a variety of animals, mainly avians and mammals (including man). Neural developmental disorders and behavioral ontogeny will also be considered.

BIOL 51600 Molecular Biology of Cancer (3 cr.)
P: 556 or consent of instructor. Spring, night. A study of human cardiovascular, pulmonary, blood, and gastrointestinal systems. Higher neuronal functions and intersystem interactions will be discussed.

BIOL 51400 Molecular Genetics of Development (3 cr.)
P: K322 or similar or consent of instructor. R: BIOL 566. Spring, day, night. Examines how key regulatory genes and molecular signaling pathways regulate development in both lower eukaryotic organisms and mammalian organ systems, with emphasis on the function and evolution of signaling molecules and transcription factor superfamilies.

BIOL 51000 Immunology (3 cr.)
P: K103, CHEM C341. Spring, night. Introduction to basic principles and experimentation in cellular and humoral immunology.

BIOL 50700 Principles of Molecular Biology (3 cr.)
P: K322 or consent of instructor. Spring, day. Principles of molecular biology and plant molecular genetics. Topics will include the structure and expression of plant nuclear, chloroplast, and mitochondrial genomes, and plant viruses.

BIOL 50000 Plant Molecular Biology (3 cr.)
P: K322, CHEM C342, or consent of instructor. Fall, night. Principles of physiology: nerve and muscle, temperature regulation, ion and water balance.

BIOL 59500 Special Assignments (1-3 cr.)
P: consent of instructor. Fall, Spring, Summer. Special work, such as directed reading, independent study or research, supervised library, laboratory or fieldwork, or presentation of material not available in the formal courses of the department.
Courses for the Nonmajor

BIOL–N 100 Contemporary Biology (3 cr.)
Fall, day, night; Spring, day, night; Summer. Selected principles of biology with emphasis on issues and problems extending into everyday affairs of the student.

BIOL–N 107 Exploring the World of Animals (4 cr.)
Equiv. PU BIOL 109. Fall, day, night; Spring, day, night; Summer, day. This course introduces students to animals and their native environments. It surveys individual ecosystems and highlights the interactions, features, and characteristics of the animals found there. Examples of discussion topics include unique features of animals, animal relationships, societies and populations, exotic species, and behavior, including mating, communication, feeding and foraging, and migration. Environmental issues including the effects of pollution on ecosystems are also discussed. Not equivalent to K103.

BIOL–N 108 Plants, Animals and the Environment (3 cr.)
Fall, day, night; Spring, day, night; Summer, day. This course is designed to provide students and future K-8 teachers with a background in the general biology concepts of plants, animals and the environment, which are the backbone of the State of Indiana science standards.

BIOL–N 200 The Biology of Women (3 cr.)
Fall, day, night; Spring, day, night; Summer. This course examines the biological basis for bodily functions and changes that take place throughout the life of females.

BIOL–N 212 Human Biology (3 cr.)
Equiv. PU BIOL 201. Fall, day. First course in a two-semester sequence in human biology with emphasis on anatomy and physiology, providing a solid foundation in body structure and function.

BIOL–N 213 Human Biology Laboratory (1 cr.)
P or C: N212. Fall, day. Accompanying laboratory for N212.

BIOL–N 214 Human Biology (3 cr.)

BIOL–N 215 Human Biology Laboratory (1 cr.)
P or C: N214. Spring, day. Accompanying laboratory for N214.

BIOL–N 217 Human Physiology (5 cr.)
Equiv. IU PHSL P215. Fall, day; Spring, day; Summer, day. Lectures and laboratory work related to cellular, musculoskeletal, neural, cardiovascular, gastrointestinal, renal, endocrine, and reproductive function in humans.

BIOL–N 222 Special Topics in Biology (1-3 cr.)
A variable-topic course dealing with current topics in biology. In a given semester, a topic such as disease, genetics, the environment, etc., will be dealt with as a separate course.

BIOL–N 251 Introduction to Microbiology (3 cr.)
P: one semester general chemistry or one semester life science. Spring, night. This course includes a laboratory component. The isolation, growth, structure, functioning, heredity, identification, classification, and ecology of microorganisms; their role in nature and significance to humans.

BIOL–N 261 Human Anatomy (5 cr.)
Equiv. IU ANAT A215. Fall, day, night; Spring, day, night; Summer, day, night. Lecture and laboratory studies of the histology and gross morphology of the human form, utilizing a cell-tissue-organ system-body approach.

BIOL–N 322 Introductory Principles of Genetics (3 cr.)
P: N107 or K101. Equiv. PU AGR 430. Spring, night. Basic principles of plant and animal genetics. Emphasis on transmission mechanisms as applied to individuals and populations. For students in health and agricultural sciences.

BIOL–N 400 Biological Skills for Teachers (3 cr.)
P: consent of instructor. Fall, night. Concepts and laboratory skills necessary to prepare teachers with diverse backgrounds to return to graduate academic biology courses are reviewed. Topics include general principles of biology, biochemistry, and biomathematics.

Graduate Level

BIOL 64100 Microbial Genetics (2 cr.)
P: K323, CHEM C342, and consent of instructor. Spring, odd years, night. Genetics of bacteria, bacterial viruses, and other microorganisms with emphasis on organization, replication, and function of the genetic material.

BIOL 69600 Seminar (1 cr.)
Fall, Spring. Each semester there are several separate offerings. They will likely be on the following topics: biochemistry, biology teaching, ecology and population biology, genetics, mechanisms of development, microbiology, neurobiology, and plant physiology. Oral presentations required. May be repeated for credit.

BIOL 69700 Special Topics (1-3 cr.)
Fall, Spring. The frontiers of biology. Critical examination of developments in the various specialties represented by the members of the department. Currently, advanced work in the following and related fields can be offered: molecular genetics; structure and biosynthesis of biologically significant molecules; the nature of biological specificity and enzyme catalysis; the fine structure and chemistry of subcellular particles, cells, and tissues; microbial and plant metabolism; comparative biochemistry; genetics and physiology of viruses, bacteria, fungi, protozoa, helminths, and cells of higher forms of life; the genetics, structure, development, and physiology of plants and animals, including endocrinology and work physiology; excitable membranes; neurobiology, ecology, systematics, and evolution of microorganisms, plants, and animals; host-parasite relationships including immunology; and the teaching of biology. The field in which work is offered will be indicated in the student's record. May be repeated for credit.

BIOL 69800 Research M.S. Thesis (Arr. cr.)
M.S. Thesis

BIOL 69900 Research Ph.D. Thesis (Arr cr.)
Research Ph.D. Thesis

Undergraduate Level

BIOL–K 101 Concepts of Biology I (5 cr.)
P: high school or college chemistry. Fall, day; Spring, day, night; Summer, day. An introductory course emphasizing the principles of cellular biology; molecular biology; genetics; and plant anatomy, diversity, development, and physiology.

BIOL–K 103 Concepts of Biology II (5 cr.)
P: K101. Fall, day, night; Spring, day; Summer, day. An introductory biology course emphasizing phylogeny, structure, physiology, development, diversity, evolution and behavior in animals.

BIOL–K 295 Special Assignments (Arr cr.)
P: consent of instructor. Fall, Spring. Special work, such as directed readings, laboratory or fieldwork, or presentation of material not available in the formal courses in the department.

BIOL–K 322 Genetics and Molecular Biology (3 cr.)
P: K103 and CHEM C106. Fall, day. Spring of even-numbered years. The course covers the principles of classical and molecular genetics including Mendelian inheritance, linkage, nucleic acids, gene expression, recombinant DNA, genomics, immunogenetics, and regulation.

BIOL–K 323 Genetics and Molecular Biology Laboratory (2 cr.)
P or C: K322. Spring, day. Applied principles of genetics and molecular biology using organisms of increasing complexity from viruses to fruit fly. Laboratory experiments include linkage analyses, deletion mapping, isolation of human chromosomes, mutagenesis, DNA extraction, restriction enzyme analysis, and PCR.

BIOL–K 324 Cell Biology (3 cr.)
P: K103 and CHEM C106. Spring, day. Examination of the structure and activity of eukaryotic cells and subcellular structures. Emphasis is on regulation of and interactions among subcellular events, such as protein targeting, transmembrane signaling, cell movement, and cell cycle.

BIOL–K 325 Cell Biology Laboratory (2 cr.)
P or C: K324. Spring, day. Experiments on the molecular and biochemical basis of organization and function of eukaryotic cells.

BIOL–K 331 Embryology (3 cr.)
P: K103. Fall, Spring, day. The development of animals through differentiation of cells, tissues, organs, and organ systems will be examined.

BIOL–K 333 Embryology Laboratory (1 cr.)
P or C: K331. Spring, day. Processes of animal development are examined in a series of classical and modern experiments using cell, tissue and embryo culture, drug treatments, and microscopic techniques.

BIOL–K 338 Introductory Immunology (3 cr.)
P: K103 and CHEM C106. Fall, day, night. Principles of basic immunology with an emphasis on the cells and molecules underlying immunological mechanisms.

BIOL–K 339 Immunology Laboratory (2 cr.)
P or C: K338. Fall, day, night. Demonstration of immunological principles by experimentation. Exercises include cells and factors of the innate and the adaptive immune systems.

BIOL–K 341 Principles of Ecology and Evolution (3 cr.)
P: K103. Fall, day. A study of the interactions of organisms with one another and with their nonbiotic environments in light of evolution.

BIOL–K 342 Principles of Ecology and Evolution Laboratory (2 cr.)
P or C: K341. Fall, day. Application of ecology and evolution principles in laboratory and field experiments as well as demonstration of techniques of general ecology.

BIOL–K 350 Comparative Animal Physiology (3 cr.)
P: N107 or K103, CHEM C106. Spring, day. A comparative examination of principles of animal physiology from molecular to organismal levels using homeostasis, regulation, and adaptation as central themes.

BIOL–K 356 Microbiology (3 cr.)
P: K103, CHEM C341. Spring, day, night. Introduction to microorganisms: cytology, nutrition, physiology, and genetics. Importance of microorganisms in applied fields including infectious disease.

BIOL–K 357 Microbiology Laboratory (2 cr.)
P or C: K356. Spring, day. Laboratory experiments and demonstrations to yield proficiency in aseptic cultivation and utilization of microorganisms; experimental investigations of biological principles in relation to microorganisms.

BIOL–K 411 Global Change Biology (3 cr.)
P: K101 and K103 or GEOL G109 and one course in chemistry or consent of instructor. Examination of changes in earth's environment over history. In-depth study of effects of environmental change, including global warming, on the ecology of various organisms.

BIOL–K 483 Biological Chemistry (3 cr.)
P: CHEM C342. Fall, day. Chemistry of biologically important molecules including carbohydrates, lipids, proteins, and nucleic acids. Special emphasis on chemistry of intermediary metabolism.

BIOL–K 484 Cellular Biochemistry (3 cr.)
P: CHEM C342. Spring, day, night. Emphasis on selected topics in cellular biochemistry, including nucleic acid: protein interactions, protein: protein interactions, protein synthesis, biogenesis of membranes, and signal
transduction. Current techniques for studying these processes in higher eukaryotes will be discussed.

Biol–K 490 Capstone (1 cr.)
P: senior standing. Faculty-directed or approved independent library research on an area of public, scientific interest or a community service activity in local industry, government, schools, or other public science-related groups or organizations. Topics for independent research and a list of service opportunities are available in the Department of Biology Office.

Biol–K 493 Independent Research (1-3 cr.)
P: consent of instructor. Fall, Spring, Summer. A course designed to give undergraduate students majoring in biology an opportunity to do research in fields in which they have a special interest.

Biol–K 494 Senior Research Thesis (1 cr.)
P: K493. Fall, Spring, Summer. A formally written report describing the results or accomplishments of K493.

Biostatistics

BIOS–S 515 Biostatistical Practicum (1-3 cr.)
P: STAT 521; BIOS S527, S546; or consent of instructor. Real-world projects in biostatistics involving participation in consulting sessions, directed reading in the literature, research ethics, design of experiments, collection of data and applications of biostatistical methods. Detailed written and oral reports required. May be repeated, up to 6 credits.

BIOS–S 527 Introduction to Clinical Trials (3 cr.)
P: STAT 512, exposure to survival analysis; or consent of instructor. Prepares biostatisticians for support of clinical trial projects. Topics: fundamental aspects of the appropriate design and conduct of medical experiments involving human subjects including ethics, design, sample size calculation, randomization, monitoring, data collection analysis and reporting of the results.

BIOS–S 530 Statistical Methods in Bioinformatics (pending approval) (3 cr.)
P: STAT 512, 519; or consent of instructor. Covers a broad range of statistical methods used in many areas of bioinformatics research, including sequence alignment, genome sequencing and gene finding, gene expression microarray analysis, transcriptional regulation and sequence motif finding, comparative genomics, and proteomics.

BIOS–S 531 Sequence Analysis (pending approval) (3 cr.)
P: BIOS S530. Project-based course to train students' skills in sequence analyses and communications; projects will cover pairwise alignment; multiple alignment, evolution and phylogeny, and cis-regulatory analysis.

BIOS–S 546 Applied Longitudinal Data Analysis (3 cr.)
P: STAT 512, 525; or permission of instructor. Covers modern methods for the analysis of repeated measures, correlated outcomes and longitudinal data. Topics: repeated measures ANOVA, random effects and growth curve models, generalized estimating equations (GEE) and generalized linear mixed models (GLMMs). Extensive use of statistical software, e.g. SAS, R.

BIOS–S 598 Topics in Biostatistical Methods (1-3 cr.)
P: Consent of advisor. Directed study and reports for students who wish to undertake individual reading and study on approved topics.

BIOS–S 621 Advanced Statistical Computing (pending approval) (3 cr.)
P: STAT 521, 525, 528. A study of computing methods commonly used in statistics. Topics include computer arithmetic, matrix algebra, numerical optimization methods with application to maximum likelihood estimation and GEEs, spline smoothing and penalized likelihood, numerical integration, random number generation and simulation methods, Gibbs sampling, bootstrap methods, missing data problems and EM, imputation, data augmentation algorithms, and Fourier transforms. Students should be proficient with effective implementation of numerical algorithms in one of commonly used computer languages (C, Fortran, S, R or similar).

BIOS–S 627 Statistics in Pharmaceutical Research (3 cr.)
P: STAT 512; BIOS S527, S546. An overview of the drug development process, including the various phases of development from pre-clinical to post-marketing. Topics: statistical issues in design, study monitoring, analysis and reporting. Additional topics may include regulatory and statistical aspects of population pharmacokinetics and real world applications.

BIOS–S 634 Stochastic Modeling in Biomedical and Health Sciences (pending approval) (3 cr.)
P: STAT 528. The aim of this course is to develop those aspects of stochastic processes that are relevant for modeling important problems in health sciences. Among the topics to be covered are: Poisson processes, birth and death processes, Markov chains and processes, semi-Markov processes, modeling by stochastic diffusions. Applications will be made to models of prevalence and incidence of disease, therapeutic clinical trials, clinical trials for prevention of disease, length biased sampling, models for early detection of disease, cell kinetics and family history problems.

BIOS–S 636 Advanced Survival Analysis (pending approval) (3 cr.)
P: STAT 528. Discusses the theoretical basis of concepts and methodologies associated with survival data and censoring, nonparametric tests, and competing risk models. Much of the theory is developed using counting processes and martingale methods. Material is drawn from recent literature.

BIOS–S 646 Advanced Longitudinal Data Analysis (pending approval) (3 cr.)
P: BIOS S546. Presents classical and modern approaches to the analysis of multivariate observations, repeated measures, and longitudinal data. Topics include the multivariate normal distribution, Hotelling’s T2, MANOVA, the multivariate linear model, random effects and growth curve models, generalized estimating equations, statistical
analysis of multivariate categorical outcomes, and estimation with missing data. Discusses computational issues for both traditional and new methodologies.

Chemistry Graduate
CHEM 5300 Introductory Biochemistry (3 cr.)
P: C342 or equivalent. A rigorous one-semester introduction to biochemistry.

CHEM 54200 Inorganic Chemistry (3 cr.)
P: C362 or equivalent or consent of instructor. Atomic structure; periodic trends and properties of the elements. Introduction to symmetry and group theory. Valence bond, molecular orbital, and ligand field theories of bonding and their application to structure and properties of inorganic and organometallic compounds. Spectroscopic properties and acid-base, oxidation-reduction, and coordination reactions of inorganic compounds. Advanced topics in main group or transition element chemistry.

CHEM 57500 Intermediate Physical Chemistry (3 cr.)
P: C362 or equivalent. Quantum theory of atoms and molecules, theories of chemical bonding, molecular spectroscopy, methods for determining molecular structure, and electrical and magnetic properties.

CHEM 59900 Special Assignments (1-4 cr.)
P: consent of instructor. Every semester including summer I and II, time arranged. Directed reading or special work not included in other courses.

CHEM 62100 Advanced Analytical Chemistry (3 cr.)

CHEM 62900 Chromatographic Methods of Analysis (3 cr.)
P: C410 or equivalent or consent of instructor. Principles and practice of modern gas and liquid chromatography and capillary electrophoresis are developed from an integrated point of view. Emphasis is placed both on theory and on features useful for practical analytical separations.

CHEM 63400 Biochemistry: Structural Aspects (3 cr.)

CHEM 63600 Biochemical Mechanisms (3 cr.)
P: one year of physical chemistry and 651. The chemical basis of enzymatic catalysis with particular emphasis on catalytic interactions important in aqueous media.

CHEM 64100 Advanced Inorganic Chemistry (3 cr.)
P: C430 or 542 or equivalent or consent of instructor. Applications of symmetry and group theory to structure, bonding and spectral properties of inorganic compounds. Advanced topics in main group and transition element chemistry including determination of structure from physical and spectroscopic properties, bonding in coordination, and organometallic compounds and inorganic reaction mechanisms.

CHEM 65100 Advanced Organic Chemistry (3 cr.)
P: C342 or equivalent. Modern structural organic chemistry. Introduction to bonding theory, stereochemistry, and computational chemistry.

CHEM 65200 Synthetic Organic Chemistry (3 cr.)
P: 651 or 657. An advanced treatment of methods for preparing major types of organic functionalities and bonds, stressing stereo chemical and radiochemical control, and employing mechanistic organic chemistry for understanding choice of reagents and reactions conditions.

CHEM 65700 Reaction Mechanisms (3 cr.)
P: C342 or equivalent or consent of instructor. Modern structural organic chemistry, introduction to physical organic chemistry, mechanisms of representative reactions, and methods used for understanding reactivity in organic transformations.

CHEM 67200 Quantum Chemistry (3 cr.)
P: one year of physical chemistry. Basic principles of classical and quantum mechanics, approximation methods, atomic structure, spectroscopy, application of group theory, and theory of molecular bonding.

CHEM 67500 Chemical Kinetics (2-3 cr.)
P: one year of physical chemistry. Experimental and theoretical considerations of chemical reaction rates and mechanisms.

CHEM 68200 Statistical Thermodynamics (3 cr.)
P: C362 or equivalent. Application of statistical mechanics to the description of imperfect gases, liquids, and solutions, to order-disorder phenomena in solids and surfaces; Monte Carlo techniques and molecular dynamics.

CHEM 69600 Special Topics in Chemistry: Analytical Spectroscopy (1-3 cr.)
P: Bachelor of Science in chemistry from an accredited institution or consent of instructor. Survey of modern techniques, applications of spectroscopy, and imaging in analytical chemistry.

CHEM 69600 Special Topics in Chemistry: Applied Computational Chemistry and Molecular Modeling (1-3 cr.)
Applied computational techniques that are widely used in the chemical and pharmaceutical industry, including computational chemistry, molecular modeling, and computer-aided synthesis.

CHEM 69600 Special Topics in Chemistry: Electroanalytical Chemistry (3 cr.)
Principles of modern methods of electroanalytical chemistry and quantitative applications to electrode reaction mechanisms and analytical determinations.

CHEM 69600 Special Topics in Chemistry: Medicinal Chemistry (1-3 cr.)
The application of basic concepts of organic chemistry, biochemistry, and pharmacology to
the design of organic medicinal agents as well as recent advances in synthesis and evaluation of pharmaceuticals.

CHEM 69600 Special Topics in Chemistry: Organometallics in Organic Synthesis (1-3 cr.) Recent developments in the use of transition metals in synthetic organic methodology. Emphasis is placed on applications of methods in the synthesis of complex organic molecules.

CHEM 69600 Special Topics in Chemistry: Protein Structure and Function (1-3 cr.) Physical forces stabilizing protein structure; protein folding. Essential features of macromolecular interactions. Introduction to enzyme kinetics and chemical mechanism in enzyme reactions.

CHEM 69600 Special Topics in Chemistry: Group Theory in Chemistry (1-3 cr.) This course is on molecular symmetry and how we obtain information about the quantum states of molecules through application of group theoretical techniques related to the symmetries of molecules.

CHEM 69600 Special Topics in Chemistry: Solid-Phase Synthesis and Combinatorial Chemistry: Theory and Practice (1-3 cr.) This course will explore how the tools of solid-phase synthesis and combinatorial chemistry are being used to solve a wide variety of problems requiring chemical solutions. Examples range from medicinal chemistry and drug discovery to new catalyst creation, from new “chiral selectors” to new biochemical probes. The course will focus on the rationale for employing a combinatorial approach in chemical discovery. It will teach the basics of solid-phase organic chemistry, and the methodology, equipment, and analytical technology employed to use it as a tool to rapidly and effectively carry out a combinatorial approach to problem solving.

CHEM 69600 Special Topics in Chemistry: Bioanalytical Chemistry (3 cr.) Modern techniques for the study of biological macromolecules, such as protein and peptides, carbohydrates, DNA, RNA, and lipids, including (1) spectroscopy (UV-Vis, Raman, NMR, mass spectrometry, and light scattering); (2) bioseparations (chromatography, electrophoresis, and microdialysis); (3) electrochemistry (sensors, electron transfer, and LCEC); and (4) miscellaneous topics (amino acid analysis, sequencing, microcalorimetry, and immunochemistry).

CHEM 69600 Special Topics in Chemistry: Biochemistry-Dynamic Aspects (1-3 cr.) Mechanisms of biological catalysis, metabolism, biosynthesis, regulation of genetic information, and molecular biology.

CHEM 69600 Special Topics in Chemistry: Bioelectrochemistry (1-3 cr.) Principles of electrochemical measurements including potentiometry, amperometry, and linear sweep and cyclic voltammetry and application to the study and utilization of biological molecules. Topics covered include redox transformations in biological systems, electron transfer between electrodes and biological molecules, and electrochemical sensors for detection and quantitation of biological analytes.

CHEM 69600 Special Topics in Chemistry: Bioinorganic Chemistry (1-3 cr.) A study of the occurrence, properties, and mechanistic roles of transition and main group elements in biological processes including photosynthesis, oxygen evolution, respiration, nitrogen fixation, metabolic detoxification, and electron transfer.

CHEM 69600 Special Topics in Chemistry: Bioorganic Chemistry (1-3 cr.) Structure and reactivity of biological macromolecules, such as proteins, enzymes, and nucleic acids, and their relevance to bioorganic chemistry. Current experimental studies of enzymes, nucleic acids, and model systems.

CHEM 69600 Special Topics in Chemistry: Biomaterials (1-3 cr.) Introduction to the field of biomaterials science including chemistry, physics, and engineering of biomaterials; biological and biochemical aspects of biomaterials; and biomaterials in medicine.

CHEM 69600 Special Topics in Chemistry: Biophysical Chemistry (1-3 cr.) The study of structure and properties of biologically important macromolecules in solution using physical techniques, with special emphasis on optical, fluorescence, and magnetic resonance spectroscopy to describe protein conformation, denaturation, catalytic center structure, thermodynamics of ligand binding, time-dependent processes, and membrane properties.

CHEM 69600 Special Topics in Chemistry: Chemical Information Technology (1-3 cr.) Overview of chemical informatics techniques, including chemical information and data systems, chemical structure and data representation and search systems, and bioinformatics techniques.

CHEM 69800 Research M.S. Thesis (Arr. cr.) Research M.S. Thesis

Undergraduate

CHEM–C 100 The World of Chemistry (3 cr.) A topically oriented, nonmathematical introduction to the nature of matter. Topics covered include fossil fuel and nuclear sources of power; environmental issues involving chemistry such as recycling, acid rain, air and water pollution, global warming, ozone depletion; genetic modification of foods, DNA profiling, use of food additives and herbal supplements; and other public policy issues involving science.

CHEM–C 101 Elementary Chemistry I (3 cr.) P: at least one semester of high school algebra. Usually taken concurrently with C121. Fall, day, night; Spring, day, night; Summer II, day. Essential principles of chemistry, atomic and molecular structure, bonding, properties and reactions of elements and compounds, stoichiometry, solutions, and acids and bases. For students who are not planning careers in the sciences and for those with no previous course work in chemistry. Note: most degree programs that include C101 require the concurrent laboratory, C121.

CHEM–C 105 Principles of Chemistry I (3 cr.) P: two years of high school algebra and one year of high school chemistry. Fall, day, night; Spring, day; Summer I, day. Usually taken concurrently with C125. A placement examination may be required for admission to this course. See “Chemistry Placement Examination” above. Principles of inorganic and physical chemistry emphasizing physical
and chemical properties, atomic and molecular structure, chemical bonding, and states of matter.

CHEM–C 106 Principles of Chemistry II (3 cr.)
P: C105 or equivalent. Fall, day; Spring, day, night; Summer II, day. Continuation of C105. Usually taken concurrently with C126. Topics include condensed phases, solution chemistry, thermodynamics, equilibrium, and kinetics.

CHEM–C 110 The Chemistry of Life (3 cr.)
High school chemistry recommended. Optional laboratory: C115. A nonmathematical introduction to organic molecules and their transformation to useful materials such as drugs and polymers. An emphasis is placed on the chemical features of biomolecules including hormones and neurotransmitters, proteins, lipids (fats), carbohydrates (sugars), and nucleic acids (DNA/RNA). The chemistry of enzymes, carcinogens, vitamins, antihistamines, anesthetics, genetic engineering, mental health, and other health-related topics.

CHEM–C 115 Laboratory for C110 The Chemistry of Life (2 cr.)
P or C: C110. Laboratory work illustrating topics covered in C110.

CHEM–C 121 Elementary Chemistry Laboratory I (2 cr.)
P or C: C101 (3 cr.) Fall, day, night; Spring, day, night; Summer II, day. Introduction to the techniques and reasoning of experimental chemistry. Emphasis is given to study of physical and chemical properties of inorganic compounds.

CHEM–C 125 Experimental Chemistry I (2 cr.)
P or C: C105 or equivalent. Fall, day, night; Spring, day; Summer I, day. Laboratory work illustrating topics covered in C105.

CHEM–C 126 Experimental Chemistry II (2 cr.)
lecture, laboratory P: C105 and C125; P or C: C106 or equivalent. Fall, day; Spring, day, night; Summer II, day. Continuation of C125. Laboratory work illustrating topics covered in C105 and C106.

CHEM–C 209 Special Problems (1-2 cr.)
P: two semesters of college chemistry and consent of instructor. Every semester, time arranged. Individually supervised special problems of chemical interest, e.g., environmental problems, development of experiments, development of audiovisual materials, etc. May be repeated for credit, but maximum of 2 credit hours may be applied toward a chemistry degree.

CHEM–C 301 Chemistry Seminar I (1 cr.)
P or C: C409 and consent of instructor. Spring, day. Content same as C301.

CHEM–C 309 Cooperative Education in Chemistry (1 cr.)
P: general and organic chemistry and consent of departmental chairperson. Every semester, time arranged. Industrial or similar experiences in chemically oriented employment. Grade is determined on basis of employment visitations, a written student report, and a supervisor evaluation report. May be repeated for a maximum of 5 credit hours, of which 3 may be used to satisfy an advanced chemistry elective.

CHEM–C 310 Analytical Chemistry (2 cr.)
P: C106 and C126. Fall. Summer I, day. Fundamental analytical processes including solution equilibria, theory and applications of electrochemistry and spectrophotometry, and chemical methods of separation.

CHEM–C 311 Analytical Chemistry Laboratory (1 cr.)
P or C: C310. Fall, Summer I, day. Laboratory instruction in the fundamental analytical techniques discussed in C310.

CHEM–C 325 Introductory Instrumental Analysis (5 cr.)
P: C311. Spring. Instrumental methods of chemical analysis and separation for the chemical technician or preprofessional chemistry major.

CHEM–C 341 Organic Chemistry I (3 cr.)
P: C106. Fall, day, night; Spring, day; Summer I, day. Comprehensive study of organic compounds. Valence bond theory, stereochemistry, and physical properties of organic compounds are discussed in detail. Introduction to reaction mechanisms and to spectroscopic identification. Synthesis and reactions of selected compounds are also discussed.

CHEM–C 342 Organic Chemistry II (3 cr.)
P: C341. Fall, day; Spring, day, night; Summer II, day. Continuation of C341. The chemistry of aromatic compounds and other major functional groups are discussed in detail. Multistep synthetic procedures and reaction mechanisms are emphasized. Introduction to biological chemistry.

CHEM–C 343 Organic Chemistry Laboratory I (2 cr.)
P: C126; P or C: C341. Fall, day, night; Spring, day, night; Summer I, day. Fundamental laboratory techniques of organic chemistry, introduction to spectroscopic methods of compound identification, and general synthetic methods.

CHEM–C 344 Organic Chemistry Laboratory II (2 cr.)
P or C: C342; P: C343. Fall, night; Spring, day, night; Summer II, day. Preparation, isolation, and identification of organic compounds, spectroscopic methods of compound identification, qualitative organic analysis, multistep synthesis.

CHEM–C 360 Elementary Physical Chemistry (3 cr.)
CHEM–C 410 Principles of Chemical Instrumentation (3 cr.)
P: C311 and C361. P or C: C362. Fall. Modern methods of instrumental analysis, including spectroscopy, chromatography, and electrochemistry.

CHEM–C 411 Principles of Chemical Instrumentation Laboratory (2 cr.)
P: C311. P or C: C410. Fall. Laboratory instruction in the instrumental analysis techniques discussed in C410.

CHEM–C 430 Inorganic Chemistry (3 cr.)
P: C362. Spring. Atomic structure; periodic trends and properties of the elements. Introduction to symmetry and group theory. Valence bond, molecular orbital and ligand field theories of bonding and their application to structure and properties of inorganic and organometallic compounds. Spectroscopic properties and acid-base, oxidation-reduction, and coordination reactions of inorganic compounds.

CHEM–C 435 Inorganic Chemistry Laboratory (1 cr.)
P or C: C430. Spring. Synthesis, characterization, and study of chemical and physical properties of inorganic and organometallic compounds.

CHEM–C 471 Chemical Information Sources (1 cr.)
P: C341. Fall. Techniques for the storage and retrieval in both printed and computer-readable formats; sources of chemical information, including Chemical Abstracts; development of search strategies; and online searching of chemical databases.

CHEM–C 472 Computer Sources for Chemical Information (1 cr.)
P: C471. Spring. Techniques for the utilization of the major computer-based information tools found in academic and industrial environments.

CHEM–C 484 Biomolecules and Catabolism (3 cr.)
P: C342. Fall. The chemical and biophysical properties of biologically important molecules and systems. Special emphasis on the relationship between structure and function in proteins, nucleic acids, and biomembranes, as well as bioenergetics, kinetics, allosteric interactions, and enzyme catalysis.

CHEM–C 485 Biosynthesis and Physiology (3 cr.)

CHEM–C 486 Biological Chemistry Laboratory (2 cr.)
P: C484 or equivalent. P or C: C485. Spring. An introduction to the important laboratory techniques currently employed by practicing biological chemists, including biomolecule isolation, purification, enzyme kinetics, and biomolecule characterization by electrophoresis, centrifugation, and spectroscopic methods.

CHEM–C 494 Introduction to Capstone (1 cr.)
P: junior standing, B.A. or B.S. program. Fall, day; Spring day. Course objectives are to: (1) facilitate student career planning, including topics such as work place or graduate school, and resume preparation; (2) improve verbal communication and presentation skills; and (3) provide appropriate discussion and planning for the independent study project, the major objective of the C495 Capstone course.

CHEM–C 495 Capstone in Chemistry (1 cr.)
P: senior standing, B.A. or B.S. program. Fall, day; Spring, day. Independent study, under the supervision of a chemistry faculty member or appropriate academic advisor can be earned by completion of: (a) a chemical research project; (b) a library research project in an area of current scientific investigation; (c) a research investigation in industry; or (d) a service activity in university, government, public schools, or other science-related groups or organizations. Students will report the results of their activities in both a formal written report and oral presentation, prepare portfolios of undergraduate work in chemistry, discuss recent scientific literature, and explore chemistry in society. Enrollment in the Capstone in Chemistry requires joint approval of the capstone instructor and the independent project advisor.

CHEM–C 496 Special Topics in Chemistry (0-3 cr.)
P: junior or senior standing; other prerequisites will be announced at the time of topic offering. Lectures on contemporary issue in chemistry. This course may also include reading assignments and special projects. Lectures on selected topics of current interest, as follows:

CHEM–C 496 Methods in Teaching Chemistry (1 cr.)
P: C105. Fall; Spring. Designed for workshop leaders, this course offers continued support and training in group dynamics and learning theory. The larger goals for this course are to continue the development of leadership skills, foster ongoing communication among workshop leaders, and provide an environment for reviewing content knowledge.

Computer and Information Science
Advanced Undergraduate and Graduate Level
CSCI 50200 Compiling and Programming Systems (3 cr.)
P: 300. R: 470. Fall. Basic principles of compilers and compiler design; control of translation, loading, and execution; symbolic coding systems; lexical and syntactic analysis; design and operation of assemblers and macroprocessors; and design of interpretive systems. Students are expected to complete a large programming project as part of the course.

CSCI 50300 Operating Systems (3 cr.)
P: 403. Spring. Basic principles of operating systems: addressing modes, indexing, relative addressing, indirect addressing, stack maintenance; implementation of multitask systems; control and coordination of tasks, deadlocks, synchronization, and mutual exclusion; storage management, segmentation, paging, virtual memory, protection, sharing, and access control; file systems; resource management; and evaluation and prediction of performance.

CSCI 50400 Concepts in Computer Organization (3 cr.)
P: 402. The fundamentals of computer hardware for computer scientists. An overview of the organization of modern computers, ranging from sequential to advanced machines. CISC, RISC, and vector processors; multiprocessors; virtual storage, hierarchical memory; interaction with O/S; connection models; high-level programming support; and cost/performance analysis.

CSCI 50600 Management of the Software Development Process (3 cr.)
A survey of the fundamental principles and concepts of managing a software project. Topics include life cycle models, standards and goals, cost estimation, risk analysis, tool use, component reuse, traceability, metrics, and process control and improvement. Students are required to apply management concepts using a project-based approach.

CSCI 50700 Object-Oriented Design and Programming (3 cr.)
An advanced exploration of the object-oriented model and programming. Topics range from a review of the object model to advanced concepts such as abstraction mechanisms, standard library/packages, OO design using an OO language, and the syntax and the semantics of constructs.

CSCI 51200 Numerical Methods for Engineers and Scientists (3 cr.)

CSCI 51400 Numerical Analysis (3 cr.)
P: 414 or equivalent. Iterative methods for solving nonlinear equations, linear difference equations, applications to solution of polynomial equations, differentiation and integration formulas, numerical solution of ordinary differential equations, and round-off error bounds.

CSCI 51500 Numerical Analysis of Linear Systems (3 cr.)
P: knowledge of programming, and MATH 351 or MATH 511. Computational aspects of linear algebra; linear equations and matrices; direct and iterative methods; eigenvalues and eigenvectors of matrices; error analysis.

CSCI 51600 Computational Methods in Applied Mathematics (3 cr.)
P: 265 and MATH 510 or consent of instructor. A study of techniques such as direct integration, shooting, finite difference, finite elements, method of weighted residuals, and methods of characteristics for solving problems in fluid mechanics, solid mechanics, dynamics, and other fields of applied mathematics.

CSCI 52000 Computational Methods in Analysis (3 cr.)
P: 230 or equivalent, and MATH 351 or MATH 511. A treatment of numerical algorithms for solving classical problems in real analysis with primary emphasis on linear and nonlinear systems of equations and on optimization problems; the writing, testing, and comparison of numerical software for solving such problems; and a
Discussion of the characteristics of quality software for implementing these algorithms.

CSCI 53600 Data Communication and Computer Networks (3 cr.)
P: 402. Data communications: communication hardware technologies including local area and long-haul network hardware, circuit and packet switching, interfaces between computer and network hardware, and performance issues. Network architecture: protocol software and conceptual layering, reliable delivery over an unreliable channel, transport protocols, virtual circuits, datagrams, Internet working as a fundamental design concept, the client-server paradigm, naming and name binding, name servers, addressing and address resolution, routing algorithms, congestion and flow control techniques, network file systems, distribution of computation, and DARPA Internet protocols (TCP/IP) as examples of protocol organization.

CSCI 53700 Introduction to Distributed Computing (3 cr.)
P: 503 and 536. Introduction to the principles and methods in the design of distributed computing systems. It covers the fundamentals of distributed computing from four perspectives: underlying communication media, protocols and their implications; operating system issues; high-level language constructs; and distributed algorithms.

CSCI 53800 The Design of Interactive Systems (3 cr.)
Fundamental concepts and tools employed in designing the interaction between humans and machines and the mediating interfaces. Topics include: design problem, interface design concepts, experimental design and analysis, cognitive and predictive models, the design project, case studies, and applications.

CSCI 53900 Computing with Distributed Objects (3 cr.)
An introductory treatment of the distributed-object model and programming. The topics range from a review of the distributed and object models of computation to advanced concepts such as remote method invocations, object brokers, object services, open systems, and future trends for distributed-object systems.

CSCI 54100 Database Systems (3 cr.)

CSCI 54300 Introduction to Simulation and Modeling of Computer Systems (3 cr.)
P: 265 and STAT 511 or equivalent. Simulation: discrete event simulation, process-oriented simulation, generating random numbers, simulation languages, simulation examples of complex systems. Nondeterministic models: random variables, Poisson process, moment generating functions, statistical inference, and data analysis. Modeling: elementary queuing models, network of queues, and applications to performance evaluation of computer systems.

CSCI 54700 Information Storage and Retrieval and Natural Language Processing (3 cr.)
P: 541. Complex data structures of fields within records, as well as clustered, multilist, and inverted files; key decoding by tree and randomized techniques; overall techniques of classical document retrieval systems, e.g., the MEDIWARS and NASA systems; overall techniques of automatic document retrieval systems, e.g., TIP and SMART, the internal structure of SMART; question answering systems; and natural language translation.

CSCI 54800 Introduction to Bioinformatics (3 cr.)
P: 340, BIOL K483, CHEM C483, or MATH 511. Analysis of biological data employing various computational methods to obtain useful information in the emerging area of bioinformatics. Topics include structures, functions and evolution of proteins and nucleic acids, retrieval and interpretation of bioinformation from the Internet, learning principles, algorithms and software for sequence alignment, similarity search of sequence databases, estimation of phylogenetic trees, structural prediction, and functional inference.

CSCI 54900 Intelligent Systems (3 cr.)
This course will discuss problems in the area of intelligent systems. Topics include the formalisms within which these problems are studied, the computational methods that have been proposed for their solution, and the real-world technological systems to which these methods have been applied.

CSCI 55000 Computer Graphics (3 cr.)
An introduction to computer graphics. Topics include the concepts, principles, algorithms, and programming techniques in 3D interactive computer graphics. Emphasis is on the development and applications of 3D graphic algorithms and methods.

CSCI 55200 Advanced Graphics and Visualization (3 cr.)
P: 550. An introduction to data visualization methods and tools, and related graphics techniques. Students will explore a variety of data representation and modeling techniques, their corresponding visualization algorithms, and practical visualization applications in scientific, engineering, and biomedical fields.

CSCI 55600 Fault-Tolerant Computing (3 cr.)
P: 362. Concepts of fault-tolerant computing; phases of fault-tolerance; applications to commercial, communication, and aerospace systems; fault-tolerance in multi-processor systems; diagnosis techniques; software fault-tolerance.

CSCI 56500 Programming Languages (3 cr.)
P: 300. R: 470. Fall. An exploration of modern or unconventional concepts of programming languages, their semantics, and their implementations; abstract data types; axiomatic semantics using Hoare's logic and Dijkstra's predicate transformers; denotational semantics; functional, object-oriented, and logic programming; concurrency and
Owicki-Gries theory. Example languages include ML, Ada, Oberon, LISP, PROLOG, and CSP.

CSCI 58000 Algorithm Design, Analysis, and Implementation (3 cr.)
P: 463 and 470. Basic techniques for designing and analyzing algorithms: dynamic programming, divide-and-conquer, balancing, upper and lower bounds on time and space costs, worst case and expected cost measures. A selection of applications such as disjoint set union/find, graph algorithms, search trees, pattern matching. The polynomial complexity classes P, NP, and co-NP; intractable problems.

CSCI 58200 Automata and Formal Languages (3 cr.)
P: 470. Spring. Finite automata, regular expressions; push-down automata, context-free grammars; and languages and behaviors. Closure properties, pumping lemmas, and decision procedures. Deterministic context-free languages and LR(k) parsing; brief survey of the Chomsky hierarchy.

CSCI 58500 Mathematical Logic I (3 cr.)
Students should register for MATH 585. P: MATH 351. Formal theories for propositional and predicate calculus with study of models, completeness, and compactness. Formalization of elementary number theory; Turing machines, halting problem, and the undecidability of arithmetic.

CSCI 59000 Topics in Computer Science (3 cr.)
Fall, spring. Directed study for students who wish to undertake individual reading and study on approved topics.

Courses for Majors
CSCI 23000 Computing I (4 cr.)
P or C: MATH 154 or MATH 159. The context of computing in history and society, information representation in digital computers, introduction to programming in a modern high-level language, introduction to algorithm and data structures, their implementation as programs.

CSCI 24000 Computing II (4 cr.)
P: 230. Continues the introduction of programming begun in CSCI 230, with particular focus on the ideas of data abstraction and object-oriented programming. Topics include programming paradigms, principle of language design, object-oriented programming, programming and debugging tools, documentation, recursion, linked data structures, and introduction to language translation.

CSCI 26500 Advanced Programming (3 cr.)
P or C: ECE 264 and CSCI 242 or CSCI 230. Spring. Learn advanced programming skills and concepts. Introduction to software engineering: problem specification and program design with emphasis on object-oriented programming, programming style, debugging, and documentation. A significant software project's required. (This course is for computer engineering and computer information systems majors.)

CSCI 30000 Systems Programming (3 cr.)
P or C: 230 and 240. Fall. Assembly language programming and structure of a simple and a typical computer. Pseudo operations, address structure, subroutines, and macros. File I/O and buffering techniques. Interfacing with high-level languages. Assemblers: one- and two-pass assemblers, system dependent and independent assembler features, and design options. Loaders, linkers, and macro processors.

CSCI 34000 Discrete Computational Structures (3 cr.)
P: 230 and MATH 165. Fall. Theory and application of discrete mathematics structures and their relationship to computer science. Topics include mathematical logic, sets, relations, functions, permutations, combinatorics, graphs, Boolean algebra, digital logic, recurrence relations, and finite-state automata.

CSCI 35500 Introduction to Programming Languages (3 cr.)
P: 240 and 340. Spring. Programming language concepts and different paradigms of programming. Topics include syntax and semantics of high-level languages, parsing methods, subprograms and their implementation, data abstraction, language translation overview including lexical analysis, syntax-directed translation, symbol table handling, code generation, functional programming, logic programming, and object-oriented programming.

CSCI 36200 Data Structures (3 cr.)

CSCI 40200 Architecture of Computers (3 cr.)
P: 340. Fall. Basic logic design. Storage systems. Processor organization: instruction formats, addressing modes, subroutines, hardware and microprogramming implementation. Computer arithmetic, fixed and floating point operations. Properties of I/O devices and their controllers. Interrupt structure. Virtual memory structure, cache memory. Examination of architectures such as microcomputers, minicomputers, and vector and array processors.

CSCI 40300 Introduction to Operating Systems (3 cr.)
P: 362, and 402. Spring. Operating system concepts; history, evolution and philosophy of operating systems. Concurrent processes, process coordination and synchronization, CPU scheduling, deadlocks, memory management, virtual memory, secondary storage and file management, device management, security and protection, networking, and distributed and real-time systems.

CSCI 41400 Numerical Methods (3 cr.)
P: MATH 262 or MATH 351. Fall. Error analysis, solution of nonlinear equations, direct and iterative methods for solving linear systems, approximation of functions, numerical differentiation and integration, and numerical solution of ordinary differential equations. Not open to students with credit in 512.

CSCI 43200 Security in Computers (3 cr.)
P: 403. An introduction to computing security to include cryptography, identity and authentication, software security, operating system security, trusted operating system design and evaluation, network threats and defenses, security management, legal aspects of security, privacy and ethics.

CSCI 43500 Multimedia Information Systems (3 cr.)
P or C: CSCI 362, MATH 351/511. Multimedia information systems concepts, evolution of multimedia information systems, media and supporting device commonly associated, image databases, techniques for presenting visual information, video databases, multimodels, audio databases, text databases, and multimedia information systems architecture.

CSCI 43600 Principles of Computer Networking (3 cr.)
P: CSCI 362. Survey of underlying principles, fundamental problems, and their solutions in designing computer networks. Laboratory projects include using network systems and network simulation environments. Topics include: motivations, networking topologies, layered open systems protocols, transmission capacity, circuit and packet switching, packet framing and error correction, routing, flow and congestion control, and internetworking.

CSCI 43700 Introduction to Computer Graphics (3 cr.)
P: 362 and MATH 351/511. An introduction to 3D programming with emphasis on game engine development using 3D graphics techniques and the standard and platform independent OpenGL library. Topics include lighting, shading, texture mapping, coordinate systems and transformations, collision detection, 3D geometric and physically based modeling and animation.

CSCI 43800 Advanced Game Development (3 cr.)
P: 437. Advanced game design and development principles and technologies. Students will gain practical experience through extensive game development project. Topics include character animation, special effects, user interface design, networking for computer games, game engine components and variations, game performance considerations, artificial intelligence, and ethics in computer games.

CSCI 44100 Client-Server Database Systems (3 cr.)
P or C: CSCI 362. Database system concepts, data models database design, CASE tools, SQL, query processing and query optimization, transaction processing, reliability and security issues, database interactions on the World Wide Web.

CSCI 44300 Database Systems (3 cr.)

CSCI 44600 Introduction to Microprocessor Architecture (3 cr.)
P: 402. Introduction to programmable logic; elements of microprocessor system design; interrupt structures; interfacing using LSI devices; hardware timers; interactive debugging; physical device I/O programming; vectored and polled service; microprocessor architecture; and self-paced laboratory using A/D converters, D/A converters, etc.

CSCI 44800 Biometric Computing (3 cr.)
P: CSCI 362 and STAT 416 or STAT 511. Biometrics is capturing and using physiological and behavioral characteristics for personal identification. It is set to become the successor to the PIN. This course will introduce computational methods for the implementation of various biometric technologies including face and voice recognition, fingerprint and iris identification, and DNA matching.

CSCI 45000 Principles of Software Engineering (3 cr.)
P: CSCI 362. Fall. Tools and techniques used in software development. Lifecycle concepts applied to program specification, development, and maintenance. Topics include overall design principles in software development; the use of structured programming techniques in writing large programs; formal methods of program verification; and techniques and software tools for program testing, maintenance, and documentation. A primary goal of this course is to provide experience in team development of software.

CSCI 45200 Object-Oriented Analysis and Design (3 cr.)
P: CSCI 362. Spring. Introduction to the object-oriented paradigm in software development. Basic concepts: objects, classes, messaging, inheritance, and methodologies. Analysis: defining objects, structures, attributes, and services. Design: transforming the analytic model into the design model. Implementation: comparison of the support features provided by languages such as Smalltalk, C++, Eiffel, and CLOS. A significant design project is required.

CSCI 46300 Analysis of Algorithms (3 cr.)
P: 362. Techniques for analyzing and comparing algorithms. Average case analysis in sorting and searching; dynamic programming: greedy algorithms, amortized analysis, and applications; matrix algorithms: polynomials, discrete Fourier transforms, and fast Fourier transforms, parallel algorithms: examples in sorting, searching, graphs, and matrices, computational complexity, polynomial complexity classes P, NP.

CSCI 47000 Automata and Formal Languages (3 cr.)
P: 362. Fall. Introduction to formal languages and automata theory: finite automata and regular expressions, context-free grammars and languages, pushdown automata, equivalence of CFGs and pushdown automata, application of pushdown automata in parsing, closure properties, pumping lemmas, decision procedures, Turing machines, computability, undecidability, and a brief survey of the Chomsky hierarchy.

CSCI 47500 Scientific Computing I (3 cr.)

CSCI 47600 Scientific Computing II (3 cr.)

CSCI 47700 High Performance Computing (3 cr.)
P: 476. Fall. Architecture of supercomputers: pipelined, vector, SIMD, MIMD; implications for algorithm and program design; and vectorization, parallelization, loop restructuring, and nonstandard language features. Splitting computation between supercomputers and workstations; interactive analyses of remote machines' output. Numerical methods for large-scale problems: examples from continuum mechanics, graphical visualization, and statistical computing. A project is required.

CSCI 48100 Data Mining (3 cr.)
P or C: 240, MATH 351/511, STAT 511/416. An introduction to data warehousing and OLAP technology for data mining, data processing, languages and systems, and descriptive data mining: characterization and comparison, association analysis classification and predication, cluster analysis mining complex types of data, application, and trends in data mining.

CSCI 48500 Expert System Design (3 cr.)
P: 362. Overview of artificial intelligence; expert system technology; early expert systems: MYCIN, DENDRAL; theoretical foundations, uncertainty measures, knowledge representation, inference engines; reasoning mechanisms: forward and backward chaining; and explanation systems, expert system shells, tools, and intelligent hybrid systems.

CSCI 48700 Artificial Intelligence (3 cr.)
P: 362. Study of key concepts and applications of artificial intelligence. Problem-solving methods, state space search, heuristic search, knowledge representation: predicate logic, resolution, natural deduction, nonmonotonic reasoning, semantic networks, conceptual dependency, frames, scripts, and statistical reasoning; advanced AI topics in game playing, planning, learning, and connectionist models.

CSCI 49000 Topics in Computer Sciences for Undergraduates (1-5 cr.)
By arrangement. Fall, spring, summer. Supervised reading and reports in various fields. Open to students only with the consent of the department.

CSCI 49500 Explorations in Applied Computing (1-6 cr.)
Fall, spring, summer. Explorations in Applied Computing is an undergraduate capstone experience. Students will work in teams, advised by faculty and external liaisons, to solve real-world computing problems. This hands-on experience will cultivate technical expertise, utilization of analytical thinking, quantitative reasoning, project management skills, and communication skills.

Graduate
CSCI 61400 Numerical Solution of Ordinary Differential Equations (3 cr.)

CSCI 61500 Numerical Solution of Partial Differential Equations (3 cr.)
P: 515 and MATH 523. The numerical solution of hyperbolic, parabolic, and elliptic equations by finite difference methods; iterative methods (Gauss-Seidel, overrelaxation, alternating direction) for solving elliptic equations; discretization and round-off errors; explicit and implicit methods for parabolic and hyperbolic systems; the method of characteristics; the concept of stability for initial value problems.

CSCI 66000 Design of Translating Systems (3 cr.)
P: 502. Systems design of higher-level programming languages and their processors; symbol tables, lexical scan, syntax scan, object code generation and optimization; boot-strapping techniques, higher-level translators, self-compilers, and decompilers; and heuristic generators.

CSCI 66100 Formal Compiling Methods (3 cr.)
P: 502. Application of concepts developed in formal language and automata theory to the design of programming languages and their processors. Models of syntactic analysis, including canonical precedence, LR(k) and LL(k) parsing methods and variants; efficiency of each. Synthesis techniques, including symbol tables, storage administration, parameter mechanisms, garbage collection; optimization considerations. Models of synthesis, including level, affix, attributed grammars; prospects of fully automating compiler design. Applicative vs. procedural languages and their implementations based on semantic definition of a language (LISP, Lucid) and on proof-like techniques (PROLOG, equational systems); merits of such approaches.

CSCI 69500 M.S. Project (1-9 cr.)
Maximum of 6 credit hours apply to degree P: consent of instructor. The student integrates and applies the knowledge gained from the formal course work to formulate and execute a solution to a problem of practical importance. The faculty advisor and the sponsoring organization mentor, if applicable, provide guidance and evaluation.

CSCI 69800 Research M.S. Thesis (1-18 cr.)
P: Consent of instructor. Formal research on M.S. Thesis supervised by the faculty advisor.

CSCI 69900 Research Ph.D. Thesis (1-9 cr.)
P: Consent of instructor. Formal research on Ph.D. Thesis supervised by the faculty advisor.

Undergraduate

CSCI–N 100 Introduction to Computers and Computing (3 cr.)
P or C: MATH 001, M001, or equivalent. No computing experience assumed. How computers work, word processing, spreadsheets, file management, and Internet skills. Emphasis on problem-solving techniques. Lecture and laboratory. Credit given for only one of CSCI N100, CPT 106, CIT 106, or BUS K201.

CSCI–N 199 Introductory Computing Topics (topic varies) (1-3 cr.)
Seminars in emerging technologies. May be repeated for credit.

CSCI–N 201 Programming Concepts (3 cr.)
Summary of basic computing topics, problem solving techniques, and their application to computing. Introduction to programming concepts with a focus on language-independent principles, such as algorithm design, debugging strategies, essential control structures, and basic data structure concepts. Lecture and laboratory.

CSCI–N 207 Data Analysis Using Spreadsheets (3 cr.)
P: MATH 111. Summary of basic computing topics. An introduction to data analysis using spreadsheets. Emphasis on the application of computational problem-solving techniques. Lecture and laboratory.

CSCI–N 211 Introduction to Databases (3 cr.)
Introduction to database design concepts, creation of user forms, development of databases, querying techniques, and building reports. Focus on relational database systems from development and administration point of view. Lecture and laboratory.

CSCI–N 241 Fundamentals of Web Development (3 cr.)
Introduction to writing content for the Internet and World Wide Web. Emphasis on servers, hand-coded HTML, Cascading Style Sheets, and extending HTML with other Web technologies. Lecture and laboratory.

CSCI–N 299 Survey of Computing Applications (topic varies) (1-3 cr.)
An introduction to an emerging technology in the computing field. It will emphasize the various problems technology helps to solve and specific problem-solving strategies. Lecture and laboratory. May be repeated for credit.

CSCI–N 301 Fundamental Computer Science Concepts (3 cr.)
P: MATH M118. An introduction to fundamental principles of computer science, including hardware architecture, algorithms, software engineering, and data storage. Lecture and laboratory.

CSCI–N 305 C Language Programming (3 cr.)
The basics of computer programming concepts using the C programming language. Emphasis on problem solving and algorithm implementation using a universal subset of the C programming language. Lecture and laboratory.

CSCI–N 311 Advanced Database Programming, Oracle (3 cr.)
P: N211 or equivalent. Focus on the concepts and skills required for database programming and client server development. Concepts will apply to any modern distributed database management system. Emphasis on developing Oracle SQLPlus scripts, PL/SQL server side programming, and Oracle database architecture. Students with programming experience in ODBC compliant languages will be able to practice connecting such languages to an Oracle database. Lecture and laboratory.

CSCI–N 321 System and Network Administration (3 cr.)
P: N301 or equivalent. Fundamental concepts of system administration. Design and administration of network servers and workstations. Focus on basic network concepts, such as user account administration, resource allocation, security issues, and Internet service management. Lecture and laboratory.

CSCI–N 331 Visual Basic Programming (3 cr.)
An introduction to programming with a focus on rapid application development environments, event-driven programming, and programming in the Windows environment. Course will demonstrate how the major application types (spreadsheets, databases, text editors) are written. Lecture and laboratory.

CSCI–N 335 Advanced Programming, Visual Basic (3 cr.)
P: N331 or equivalent. Databases and VB, object-oriented design and practice, the component object model, interobject communication, related RAD environments such as VB for Applications and ActiveX using the Windows API, and generating online help. Lecture and laboratory.

CSCI–N 341 Introduction to Client-Side Web Programming (3 cr.)
P: N241 or equivalent. Introduction to programming with a focus on the client-side programming environment. Programming using languages commonly embedded in Web browsers. Lecture and laboratory.

CSCI–N 342 Server-Side Programming for the Web (3 cr.)
P: N341. Designing and building applications on a Web server. Focuses on the issues of programming applied to Web servers. Emphasis on relational database concepts, data design, languages used on the server, transaction handling, and integration of data into Web applications.

CSCI–N 343 Object-Oriented Programming for the Web (3 cr.)
P: N341 or N307. Algorithm design and development within the object-oriented paradigm. Students will utilize Java to create Web-based application software with strong user interaction and graphics. In addition, students will utilize Oracle and SQL to learn introductory database
design principles, coupling back-end database operation to application software. Lecture and laboratory.

CSCI–N 345 Advanced Programming, Java (3 cr.)
P: N307 or N331 or N341 or equivalent. A Java language course designed for students familiar with programming and the World Wide Web. Focus on the unique aspects of Java, Applet, and GUI design, object-oriented programming, event-handling, multithreaded applications, animation, and network programming. Lecture and laboratory.

CSCI–N 351 Introduction to Multimedia Programming (3 cr.)
An integration of computing concepts and multimedia development tools. An introduction to the science behind multimedia (compression algorithms and digital/audio conversion). Use of authoring tools to create compositions of images, sounds, and video. Special emphasis given to using the Web as a multimedia presentation environment. Lecture and laboratory.

CSCI–N 355 Introduction to Virtual Reality (3 cr.)
Explore concepts of 3D imaging and design including primitive shapes, transformations, extrusions, face sets, texture mapping, shading, and scripting. Lecture and laboratory.

CSCI–N 361 Fundamentals of Software Project Management (3 cr.)
P: N300-level programming class or consent of instructor. Tools and techniques used to manage software projects to successful completion. Problem-solving focus to learn specification development and management, program success metrics, UML modeling techniques, code design and review, principles, testing procedures, usability measures, release and revision processes, and project archival. Lecture and laboratory.

CSCI–N 399 Topics in Computing (topic varies) (1-3 cr.)
P: N200-level course or equivalent. An investigation of an emerging language or topic in computing. May be repeated for credit.

CSCI–N 431 E-Commerce with ASP.NET (3 cr.)
P: N331 or equivalent. Topics include basic Web controls, form validation, connecting to an Enterprise-level database, SSL, and sending email within an ASP.NET Web page. A significant software development final project creating a functional Web store is featured. Lecture and laboratory.

CSCI–N 435 Data Management Best Practices with ADO.NET (3 cr.)
P: N331 or equivalent. A study of managing data in the .NET environment. Focus on strategies to efficiently manage data for large-scale projects. Topics include XML, DataSets, SQL, and error management. Lecture and laboratory.

CSCI–N 443 XML Programming (3 cr.)
P: N241 and an N300-level programming course. Fundamentals of XML programming language. After mastering fundamental XML scripting syntax, the course focuses on narrative-centric and data-centric XML applications. Narrative content includes CSS, DTD and XSLT, and X-path, -link, and -pointer tools; data-centric content includes the DOM, Schemas, and ADO/ASP. A required masterpiece project summarizes course competencies. Lecture and laboratory.

CSCI–N 451 Web Game Development (3 cr.)
Study of basic game development principles with a focus on client-side Web delivery. Topics to include creation of sprite objects, user interaction concepts, basic intelligence concepts, game data structures, and basic game physics. Lecture and laboratory.

CSCI–N 461 Software Engineering for Applied Computer Science (3 cr.)
P: N361 or consent of the instructor. This is a survey course covering software engineering concepts, tools, techniques, and methodologies. The topics covered include software engineering, software process and its difficulties, software lifecycle models, project planning including cost estimation, design methodologies including structured design, data structure-oriented design, object-oriented design, and software testing. This course is intended for nonmajors, and credit will not be awarded to computer science majors.

CSCI–N 485 Capstone Project in Applied Computing (3 cr.)
P: N301 and N341. This course provides students with a mechanism for producing and integrating technical achievement meritorious of program culmination. The project will demonstrate subject matter mastery within project development guidelines and reflect both a breadth and depth of technically focused problem-solving skills.

CSCI–N 499 Topics in Applied Computing (topic varies) (1-3 cr.)
P: N300-level course or equivalent. An investigation and examination of an emerging discipline in applied computer science.

Forensic and Investigative Sciences

Undergraduate

FIS 20500 Concepts of Forensic Science I (3 cr.)

FIS 20600 Concepts of Forensic Science II (3 cr.)
P: FIS 205, BIOL K101, CHEM C105 and CHEM C125. Spring. Continuation of FIS 205. Forensic chemistry and biology; hairs and fibers, fires and explosions, paints and coatings, blood and DNA, drugs, and toxicology.

FIS 25000 Photography at a Crime Scene I (3 cr.)
This course teaches the basics of photography using film, digital and video cameras in the recording of a crime scene. Lectures, discussions and practical exercises help students practice each system applying specific
FIS 25100 Photography at a Crime Scene II (3 cr.)
This course teaches how to document a crime scene with high quality photographs that fairly and accurately represent what was found at a scene so that the implications can be conveyed to others sitting in judgment.

FIS 26000 Scientific Digital Imaging I (3 cr.)
Digital imaging technology provides the opportunity for increased efficiency and effectiveness in processing images for legal matters. It is possible to more quickly capture the right images and it is possible to extract more information from images using high-speed computers and advanced software. This course teaches the techniques and processes that can be used.

FIS 26100 Scientific Digital Imaging II (3 cr.)
This course teaches the basics of image processing for images that may be used for courtroom purposes. Digital imaging methods, following guidelines of the Scientific Working Group on Imaging Technology of the FBI will be utilized to produce high quality, valid and reliable images suitable for courtroom applications.

FIS 30500 Professional Issues in Forensic Science (3 cr.)
P: FIS 205, FIS 206 and junior status required. Spring, day. Open only to majors in the FIS program or with consent of the instructor. Ethical issues in forensic science. History, development, and culture of crime laboratories. Expert testimony, quality assurance, and control in a crime lab. Preparing for employment in a forensic science agency; locating jobs and preparing for interviews.

FIS 40100 Forensic Chemistry I (4 cr.)
P: FIS 206, CHEM C342, CHEM C344, CHEM C310, CHEM C311, CHEM C410, CHEM C411. Open only to majors in the FIS program or with consent of the instructor. Fall. Techniques in the analysis of forensic chemical evidence. Topics include chromatography (thin layer, gas, liquid), mass spectrometry, spectroscopy (IR, UV-visible), weighing, and sample preparation.

FIS 40200 Forensic Biology I (4 cr.)
P: FIS 206, BIOL K101, BIOL K103, BIOL K338, BIOL K339. Open only to majors in the FIS program or with consent of the instructor. Fall. Analysis of blood and other human and animal bodily fluids, including semen, saliva, and vaginal swabs. Analysis of blood spatter patterns.

FIS 40300 Forensic Biology II (4 cr.)
P: FIS 402. Open only to majors in the FIS program or with consent of the instructor. Spring. Continuation of FIS 402. Forensic analysis of DNA evidence.

FIS 40400 Forensic Chemistry II (4 cr.)
P: FIS 401, CHEM C310, CHEM C311, CHEM C410, CHEM C411. Spring. Open only to majors in the FIS program or with consent of the instructor. Continuation of FIS 401. Applications of microscopy, chromatography and spectroscopy to the analysis of real and mock evidence including hairs and fibers, soil and glass, paint, fire residues, drugs, and other chemical evidence.

FIS 40900 Forensic Science Research (1-4 cr.)
P: junior or senior standing in FIS Program and consent of instructor. Every semester, time arranged. Forensic science or literature research with a report. Can be elected only after consultation with research advisor and approval of program advisor.

FIS 41500 Forensic Science and the Law (3 cr.)
P: FIS 206, 305. Open only to majors in the FIS program or with consent of the instructor. Fall. Application of various laws and rules of evidence to the forensic sciences and how the admission of evidence derived from forensic sciences can impact the administration of justice in the United States. Topics include preparation for testimony, expert testimony, subpoenas, basic judicial processes, admissibility of scientific evidence.

FIS 49000 Forensic Science Capstone (1-5 cr.)
P: junior or senior standing in FIS Program and program advisor approval. Fall, day; Spring, day; Summer, day. One of the following: Internship at an approved crime laboratory or other organization, or laboratory research supervised by an FIS faculty member. Final paper required in all cases.

FIS 50500 Seminar in Forensic Science (pending approval) (3 cr.)
P: Open only to majors admitted to B.S. or M.S. program. Fall. Development of Forensic Science. Ethics and quality assurance and control. Laboratory management, use of scientific evidence in criminal justice system.

FIS 51100 Forensic Chemistry I (pending approval) (4 cr.)
P or C: 505. Fall. Open only to majors admitted into the B.S. or M.S. program. This course covers major techniques used in the analysis of chemical evidence commonly encountered at crime scenes. Various instrumental methods of analysis will be used. There are lecture and laboratory components for each type of evidence covered.

FIS 51200 Forensic Chemistry II (pending approval) (4 cr.)
P or C: 505; P: 511. Spring. Open only to majors admitted into the B.S. or M.S. program. Continuation of 511. This course covers major techniques used in the analysis of chemical evidence commonly encountered at crime scenes. Various instrumental methods of analysis will be used. There are lecture and laboratory components for each type of evidence covered.

FIS 51500 Forensic Science and the Law (pending approval) (3 cr.)
P: Open only to students enrolled in the Master of Science in Forensic Science program or students enrolled in the IU School of Law or with consent of the instructor. Fall. Application of various laws and rules of evidence to the forensic sciences and how the admission of evidence derived from forensic sciences can impact the administration of justice in the United States. Topics include preparation for testimony, expert testimony,
subpoenas, basic judicial processes, admissibility of scientific evidence.

FIS 52100 Forensic Biology I (pending approval) (4 cr.)

P or C: FIS 505. Fall. Open only to majors in B.S. or M.S. program. Forensic identification of biological evidence including blood and other body fluids. Blood spatter analysis.

FIS 52200 Forensic Biology II (pending approval) (4 cr.)

P or C: FIS 505, 521. Spring. Open only to majors in B.S. or M.S. program. Continuation of FIS 521. Extraction and analysis of DNA evidence by PCR based methods including STR and SNP. Determination of sex. Interpretation of DNA evidence. Quality assurance and control.

FIS 53100 Forensic Toxicology I (pending approval) (4 cr.)

P or C: 505; P: 511. Fall. Open only to FIS majors admitted into the B.S. or M.S. program. Analysis of forensic chemical and trace evidence. Includes hairs and fibers, paints and coatings, glass and soil, inks, fingerprints, and fire and explosive residues.

FIS 53200 Forensic Toxicology II (pending approval) (4 cr.)

P or C: 505; P: 531. Spring. Open only to FIS majors admitted into the B.S. or M.S. program. Continuation of FIS 531. The course covers the issue of ethyl alcohol intoxication and drunk driving laws and the analysis of alcohol. In addition, illicit drugs and their fate in the body will be surveyed, including methods of analysis. There will be lectures and laboratories.

FIS 69500 Seminar (pending approval) (0-1 cr.)

Fall. Spring. Group meetings for review and discussion of current topics in forensic and investigative sciences. All graduate students are required to attend.

FIS 69600 Special Topics in Forensic and Investigative Sciences (pending approval) (1-4 cr.)

P or C: FIS 505 and consent of instructor. Fall, Spring. Selected research and topics of current interest to the field of forensic and investigative sciences. May be repeated for credit provided that the topic is different.

FIS 69800 Research M.S. Thesis (pending approval) (1-10 cr.)

P: Consent of instructor. Credit hours arranged.

General Science

SCI–I 120 Windows on Science (1 cr.)

Fall, spring. Designed for new and prospective science majors, the course covers an integrative overview of science, examining science and society, the scientific method and community of scientists, undergraduate research, professional ethics, an exploration of science-based careers, and strategies for success as a science major.

SCI–I 200 Tutorial in Interdisciplinary Studies (1 cr.)

Fall, Spring. Tutorial under the supervision of a faculty mentor to develop a proposal to pursue a plan of study focused on a science-based, interdisciplinary area. The proposal is to be submitted to the review committee for approval. Each student will maintain a journal on the progress on the plan of study.

SCI–I 294 Beginning Science-Based Internship (0-3 cr.)

P: sophomore or junior standing and program advisor approval. Fall, spring. A semester of full- or part-time beginning internship experience in an industrial, government, or business setting matching the student's academic and career objectives. A comprehensive written report on the experience is required.

SCI–I 494 Internship in Science-Based Fields (0-6 cr.)

P: junior or senior standing and program advisor approval. Fall, spring. A semester of full-time or part-time internship experience in an industrial, government, or business setting matching the student's academic or career objective. A comprehensive written report on the experience is required.

SCI–I 495 Readings and Research in Science (1-3 cr.)

P: junior or senior standing, consent of instructor(s), and approval of review committee. Every semester, time arranged. Independent, interdisciplinary study and research in science and science-related fields. A major paper must be submitted. May be repeated for a maximum of 6 credit hours.

Geology

GEOL–G 107 Environmental Geology (3 cr.)

P: none. Fall, Spring, Summer. An introduction to geology through discussion of geological topics that show the influence of geology on modern society. Topics include mineral and energy resources, water resources, geologic hazards and problems, geology and health, and land use.

GEOL–G 109 Fundamentals of Earth History (3 cr.)

GEOL–G 110 Physical Geology (3 cr.)

P: none. Fall, Spring, Summer. Introduction to processes within and at the surface of the earth. Description, classification, and origin of minerals and rocks. The rock cycle. Internal processes: volcanism, earthquakes, crustal deformation, mountain building, plate tectonics. External processes: weathering, mass wasting, streams, glaciers, ground water, deserts, coasts. With laboratory G120, equivalent to IU GEOL G103, IU GEOL G111, and PU GEOS 111.

GEOL–G 115 Introduction to Oceanography (3 cr.)

P: none. Fall, Spring, Summer. Nonmathematical introduction to the geology, biology, and physical characteristics of the ocean. Includes waves, tides, and currents of the world ocean, the adaptations and
distribution of marine animals, pollution of the marine ecosystem, and an introduction to the global ocean/atmosphere system.

GEOL–G 117 Environmental Geology Laboratory (1 cr.)
P or C: G107. Fall, Spring, Summer. Laboratory exercises in environmental aspects of the geosciences. To accompany G107.

GEOL–G 119 Fundamentals of Earth History Laboratory (1 cr.)
P or C: G109. Fall, Spring, Summer. Laboratory studies of rocks, fossils, and stratigraphic principles to reconstruct past environments and interpret Earth history. To accompany G109.

GEOL–G 120 Physical Geology Laboratory (1 cr.)
P or C: G110. Fall, Spring, Summer. Laboratory studies of minerals and rocks, landscapes, and earth structures.

GEOL–G 123 Art and the Earth Sciences (3 cr.)
The principles of geology and the evolution of the Earth and life as revealed by art objects. Use of Earth materials in art. The influence of art history on the development of modern geologic thought. Laboratories in lithography, etching, music, morphing, and microscopy.

GEOL–G 130 Short Courses in Earth Science (topic varies) (1 cr.)
P: none. Five-week courses on a variety of topics in the earth sciences. Examples of topics include lunar and planetary geology; geology of Indiana; geology of national parks; glaciers; water; gemstones; geology of art; earthquakes and volcanoes; dinosaurs. Each short course is one credit; no topic may be taken for credit more than once.

GEOL–G 122 Environmental Problems (3 cr.)
This course is offered via the Internet, and provides experience in addressing some of the kinds of problems that arise in studies of the environment. Particular attention is given to developing skills in evaluating scientific articles; specifically, the relevance of the information in an article, the credibility of the author, and the accuracy and usefulness of the quantitative information provided. The kinds of problems considered in this course will vary from semester to semester, but will be chosen from a list that includes global warming, tropical rain forests, acid rain, water pollution, solid waste disposal, appropriate use of land, and the ability of regulations to protect the environment. Three or four such topics will be covered each semester.

GEOL–G 135 Indiana Geology (3 cr.)
An in-depth investigation of Indiana's geology, including minerals and rocks, geologic time, mineral resources, fossils, topography, soil, water resources, and special geologic features such as the Falls of the Ohio River and Indiana Dunes.

GEOL–G 136 Indiana Geology Laboratory (1 cr.)
P or C: G107, G110, or G135. Field experiences and practical exercises in applying geologic principles and observing the geologic phenomena of Indiana.

Topics may include sedimentary rocks and fossils, soils, mineral resources, hydrology, glacial history, and Karst topography. Students will visit multiple park areas, complete problem solving or hands-on exercises, and submit written reports.

GEOL–G 180 Dinosaurs (3 cr.)
P: none. Fall, Spring, Summer. A survey of the characteristics and evolution of dinosaurs. Topics include: occurrence of dinosaur remains in the fossil record, basic anatomy, principles used in classification, types of predatory and plant-eating dinosaurs, environments occupied during life, biology and behavior, extinction theories, dinosaur hunters, and dinosaurs in the media and the public eye.

GEOL–G 199 Service Learning in Geology (1 cr.)
P or C: G107, G110, or G115. Students participate in community service projects. Completion of the project includes a paper reflecting on how the service experience contributed to their application of the principles of general education.

GEOL–G 205 Reporting Skills in Geoscience (3 cr.)
P: G110, G209, and ENG W131. Spring. Techniques of presenting written and oral reports from the geoscience approach. The written report: mechanics of format and illustrations, proper citation of geoscience literature, the abstract, proofreading, and editing. The oral report: effective presentation and response to audience questions, simulating a professional science meeting.

GEOL–G 206 Advanced Physical Geology Laboratory (1 cr.)
P or C: G110. Fall, Spring. The laboratory study of minerals, rocks, topographic maps and aerial photographs, landforms and landscapes, structural geology, and geologic maps.

GEOL–G 209 History of the Earth (3 cr.)

GEOL–G 221 Introductory Mineralogy (4 cr.)

GEOL–G 222 Introductory Petrology (4 cr.)

GEOL–G 250 Water and Environmental Issues in Earth Sciences (3 cr.)
P: G107, GEOG G107 or equivalent. This interdisciplinary course addresses the relationship between water and
current environmental issues in Earth Sciences both from a physical (processes) and human perspective.

GEOL–G 300 Environmental and Urban Geology (3 cr.)
P: G107 or G110 or consent of instructor. Significance of regional and local geologic features and geologic processes in land use planning; use of geologic data in areas of rapid urbanization to properly utilize mineral and water resources and to assess potential geologic hazards.

GEOL–G 303 Geologic Mapping and Field Methods (4 cr.)
P: G205, G209, and G222; or consent of instructor. Fall. Brunton-compass and GPS/GIS mapping. Measuring and describing stratigraphic sections of sedimentary rocks and surficial deposits. Mapping geologic structures. Field hydrology. Interpretation of maps, aerial photographs, and satellite imagery.

GEOL–G 304 Principles of Paleontology (3 cr.)
P: G209 or consent of instructor. Spring. Biological principles applied to the fossil record. Examination of the quality of the fossil record, taxonomic principles and procedures, analytical techniques, evolutionary theory, evolution and paleoecology of species, populations and communities, diversification and extinction, paleogeography. Laboratories: systematics, stratigraphic distribution, and ecology of major fossilized invertebrate phyla.

GEOL–G 306 Earth Materials (4 cr.)
P: G110 and CHEM C106. Spring. The physical and chemical properties of Earth materials, and the chemical processes that have altered them to cause Earth to evolve to its present state. This course covers properties of minerals and their identification, genesis of igneous, metamorphic and sedimentary rocks, interactions between solid Earth and the hydrosphere, and interactions between humans and the solid Earth.

GEOL–G 307 Environmental Problems and Restoration (3 cr.)
P: One introductory college course in geology, biology, or chemistry and one course in college algebra. Human impact on natural environments in urban settings, emphasizing field and laboratory exercises designed for developing proficiency and understanding in sampling, testing and data analysis of ground and surface water, soils, and ecosystems. Creating and delivering presentations geared for public education regarding urban environmental problems and their remediation

GEOL–G 323 Structural Geology (4 cr.)
P: G205, G206, G209, G222, and G303. Spring. Nature and origin of primary and secondary structural features of the earth's crust, with emphasis on mechanics of deformation and origin, and three-dimensional problems illustrating structural concepts. Laboratory.

GEOL–G 334 Principles of Sedimentation and Stratigraphy (4 cr.)
P: G205, G209, and G222. P or C: G303. Fall. Processes and factors influencing genesis of sedimentary particles and their deposition. Interpretation of depositional environments. Sedimentary facies and interpretation of stratigraphic record from outcrop, core sequence, and remote sensing. Laboratory. Field trip.

GEOL–G 403 Optical Mineralogy and Petrography (3 cr.)
P: G205 and G222. Identification of rock-forming minerals in fragments and thin sections using principles of optical crystallography and the petrographic microscope. Description of common igneous, sedimentary, and metamorphic rocks and interpretation of their genesis using hand specimens and thin sections.

GEOL–G 404 Geobiology (3 cr.)
P: G205, G209, and G222, and BIOL K101 or BIOL K103 or BIOL N107, or consent of instructor. Principles of paleontology. Emphasis on invertebrates. Major patterns and fundamentals of biological evolution as revealed by the fossil record. Use of fossils in the study of stratigraphy and Earth's history. Laboratory exercises examine the form, ecology, and stratigraphic record of major phyla with a fossil record.

GEOL–G 406 Introduction to Geochemistry (3 cr.)
P: G205, CHEM C106, or consent of instructor. Interactions between geology, chemistry, and biology in natural systems. Explores biogeochemical processes on small scales and in terms of global cycles, as well as human impacts on biogeochemical cycling.

GEOL–G 410 Undergraduate Research in Geology (1-3 cr.)
P: G205, junior standing, and consent of instructor. Field and laboratory research in selected problems in geology. May be repeated. A total of 3 credit hours may be applied toward the degree.

GEOL–G 413 Introduction to Geophysics (3 cr.)
P: G205 and consent of instructor. Applications of gravity, magnetics, seismology, electricity, and other methods of mineral exploration, engineering, and environmental investigations.

GEOL–G 415 Principles of Geomorphology (3 cr.)
P: G205, G209, G222, and G303. P or C: G334. Natural processes that create landforms and land-scapes. Physics and chemistry of weathering and soil formation. Dynamics of mass wasting, streams, and glaciers. Includes field and laboratory investigations.

GEOL–G 416 Economic Geology (3 cr.)
P: G205 and G222; or consent of instructor. Origin, geologic occurrence, distribution, use, and conservation of important geologic natural resources: metallic minerals; industrial minerals and rocks; coal, petroleum, natural gas, and other energy resources.

GEOL–G 418 Igneous and Metamorphic Petrology (3 cr.)
P: G222 or equivalent. The petrogenesis of igneous and metamorphic rocks. Both lecture and laboratory portions of the course will stress the application of modern petrographic, mineralogic, geochemical, and phase
equilibria techniques to the solution of relevant petrologic problems.

GEOL–G 420 Regional Geology Field Trip (1-3 cr.)
P: G205 or consent of instructor. Summer. Field trip to selected regions for study of mineralogic, lithologic, stratigraphic, structural, paleontologic, geomorphologic, or other geological relationships.

GEOL–G 430 Principles of Hydrogeology (3 cr.)
P: G205, G206, MATH 153, CHEM C106, PHYS P202 or PHYS 251, and introductory biology. An introduction to the hydrologic cycle, reviewing processes such as precipitation, evaporation and transpiration, infiltration, runoff, streamflow and watersheds, and groundwater.

GEOL–G 431 Wetland Ecosystems (3 cr.)
P: G334 or equivalent, or consent of instructor. Wetland ecosystems will explore wetlands and their role in ecosystem function. Topics will encompass wetland definitions, geomorphic setting, functions and values, hydrology, vegetation and soils, wetland biogeochemistry, and wetland mitigation and the regulatory framework in which wetlands are treated. The course evaluates the status and trends of Indiana wetlands and types of wetlands common in Indiana.

GEOL–G 436 Geological Remote Sensing (3 cr.)
P: Geology G222, Geography G336, and P202 or consent of instructor. Spectroscopic analysis of rocks and minerals from terrestrial and extraterrestrial environments, and geologic application of remotely sensed spectral information. Topics include mapping rock-forming minerals, assessing and monitoring geologic hazards, and exploration for mineral deposits.

GEOL–G 445 Applied Analytical Techniques in Geology (3 cr.)
P: G221, CHEM C105 and C106, and consent of instructor. Principles of advanced analytical techniques, including X-ray analysis, electron beam imaging and analysis, and mass spectrometry, with applications in geosciences. Lectures on theory followed by laboratory exercises. Students will complete individual or collaborative research projects.

GEOL–G 447 Planetary Geology (3 cr.)
P: G110 or equivalent course, or consent of instructor. Origin and evolution of planets. The roles of impacts and volcanism in surface dynamics, and the role of water in planetary climates.

GEOL–G 451 Principles of Hydrogeology (3 cr.)
P: G205 and G110; or consent of instructor. R: G334. Geologic and hydrologic factors controlling the occurrence and dynamics of groundwater. Emphasis on basic physical and chemical relationships between water and geologic material.

GEOL–G 460 Internship in Geology (3 cr.)
P: G303, G304, G323, G334. Fall, Spring, Summer. Industrial or similar experiences in geologically oriented employment. Projects jointly arranged, coordinated, and evaluated by faculty and industrial/governmental supervisors.

GEOL–G 486 Soil Biogeochemistry (3 cr.)
P: G406, or consent of instructor. Biological and geochemical processes controlling the cycling of elements in soils and freshwater sediments with emphasis on cycles of carbon, nitrogen and phosphorous.

GEOL–G 490 Seminar in Geology (1-3 cr.)
P: junior or senior standing and consent of instructor. Readings and discussion of selected topics. May be repeated, provided different topics are studied, for a maximum of 6 credit hours.

GEOL–G 495 Senior Thesis in Geology (1 cr.)
P: G303, G304, G323, G334, and two 400-level geology courses. Capstone experience involving a research project. Written report required.

GEOL–G 499 Honors Research in Geology (3 cr.)
P: approval of departmental Honors Committee.

GEOL–G 502 Trace Element and Isotope Geochemistry (3 cr.)
P: CHEM C360 or C361 or GEOL G406. Principles governing the distributions of trace elements, radioisotopes, and stable isotopes in igneous, metamorphic, or sedimentary environments. Emphasis on applications to petrology and geochronology.

GEOL–G 525 Glacial Geology (3 cr.)
P: G415 or consent of instructor. Formation, dynamics, and regimen of glaciers. Erosional and depositional processes and landforms. Glaciation of North America with emphasis on stratigraphy, soils, climates, and physical changes resulting from glacial processes and environments. Field investigations and a student research project required.

GEOL–G 527 Geological Oceanography (3 cr.)
P: graduate standing, G334, and G413. Geological features and processes operating in the oceans; continental shelf, slope and ocean-basin geomorphology, sedimentology, structure, and composition; origin and geologic history of seawater and ocean basins.

GEOL–G 535 Quaternary Geology (3 cr.)
P: G415 or consent of instructor. Characteristics, distribution, and origin of Pleistocene and recent deposits, stratigraphy and chronology; formation of associated landforms, landscapes, paleosols, and soils; Quaternary environments and paleoclimatic interpretation.

GEOL–G 545 Applied Analytical Techniques in Geology (3 cr.)
P: G221, CHEM C105-C106, and consent of instructor. Principles of advanced analytical techniques, including X-ray analysis, electron beam imaging and analysis, and mass spectrometry, with applications in geosciences. Lectures on theory followed by laboratory exercises. Students will complete individual or collaborative research projects.
GEOL–G 546 Planetary Remote Sensing (3 cr.)
P: Previous course work in remote sensing, or consent of instructor. Application of multi-spectral data for exploration and mapping of planetary surfaces.

GEOL–G 550 Surface-Water Hydrology (3 cr.)
P: G430 or G451. In-depth analysis of surface water components of hydrologic cycle: hydrometeorology, evaporation/transpiration, rainfall-runoff relationships, open-channel flow, flood hydrology, and statistical and probabilistic methods in hydrology.

GEOL–G 551 Advanced Hydrogeology (3 cr.)
P: G430 or G451. Advanced treatment of concepts fundamental to subsurface hydrologic processes. Applications to groundwater resource development and environmental protection such as aquifer mechanics and well hydraulics, heterogeneity and anisotropy, ground water and surface water interactions, unsaturated flow, and tracer and contaminant transport.

GEOL–G 585 Environmental Geochemistry (3 cr.)
P: G406 or consent of instructor. Aquatic and environmental geochemistry, including freshwater and marine systems, natural and human-induced changes to geochemical systems, and the geochemical record of paleoceanographic and paleoclimatic variations.

GEOL–G 595 Data Analysis Techniques in Geoscience (3 cr.)
P: STAT 301 and CSCI N207, or equivalent. Application of statistical and numerical analysis techniques to geoscience data, including sampling methods, confidence intervals, least squares methods, correlation, time series analysis, and multivariate techniques. Emphasis on using a computer to solve geoscience problems.

GEOL–G 596 Topics in Applied Environmental Geology (3 cr.)
P: consent of instructor. Application of geologic principles to common environmental problems. Topics covered include waste site assessment, flood hazard analysis and mitigation, slope stability, and hydrogeology. Application of principles to problems pertaining to urban planning, earthquake-resistant design, and waste site/landfill development.

GEOL–G 621 Modeling Hydrological Systems (3 cr.)
P: G430 or G451 and consent of instructor. Introduction to groundwater flow and solute transport modeling. Includes development of equations describing groundwater flow and applied ground water/contaminant transport modeling, using a variety of current software packages.

GEOL–G 635 Soil Geomorphology (3 cr.)
P: G415. Application of geomorphic principles in evaluation of weathering and soil formation; systems analysis of soil-landscape models; paleogeomorphology and paleopedology. Lectures and discussion; field and laboratory problems.

GEOL–G 640 Fluvial Geomorphology (3 cr.)
P: G415 or consent of instructor. Survey of fluvial processes including sediment transport, bed and bank erosion, and river metamorphosis. Examination of the controls on channel form. Analysis of landform genesis with an emphasis on feature sedimnetology and stratigraphy. Application of fluvial geomorphic principles to land management and restoration of riparian ecosystems.

GEOL–G 645 Carbonate Sedimentology (3 cr.)
P: G334 or consent of instructor. Spring. Course focuses on origin and generation of carbonate grains, description of modern carbonate depositional environments, interpretation of ancient limestone and dolomite sequences, and carbonate diagenesis.

GEOL–G 690 Advanced Geology Seminar (Arr. cr.)
P: consent of instructor.

GEOL–G 700 Geologic Problems (1-5 cr.)
P: consent of instructor. Consideration of special geologic problems.

GEOL–G 810 Thesis Research (6 cr.)
Thesis Research

Mathematical Sciences

Advanced Undergraduate and Graduate

MATH 50400 Real Analysis (3 cr.)
P: 444 or consent of instructor. Completeness of the real number system, basic topological properties, compactness, sequences and series, absolute convergence of series, rearrangement of series, properties of continuous functions, the Riemann-Stieltjes integral, sequences and series of functions, uniform convergence, the Stone-Weierstrass theorem, equicontinuity, and the Arzela-Ascoli theorem.

MATH 50500 Intermediate Abstract Algebra (3 cr.)
P: 453 or consent of instructor. Group theory with emphasis on concrete examples and applications. Field theory: ruler and compass constructions, Galois theory, and solvability of equations by radicals.

MATH 51000 Vector Calculus (3 cr.)
P: 261. Spring, summer. Calculus of functions of several variables and of vector fields in orthogonal coordinate systems. Optimization problems, implicit function theorem, Green’s theorem, Stokes’s theorem, divergence theorems, and applications to engineering and the physical sciences.

MATH 51100 Linear Algebra with Applications (3 cr.)
P: 261. Fall, spring, summer. Not open to students with credit in 351. Matrices, rank and inverse of a matrix, decomposition theorems, eigenvectors, unitary and similarity transformations on matrices.

MATH 51800 Advanced Discrete Mathematics (3 cr.)
P: 266 or consent of instructor. This course covers mathematics useful in analyzing computer algorithms. Topics include recurrence relations, evaluation of sums, integer functions, elementary number theory, binomial coefficients, generating functions, discrete probability, and asymptotic methods.

STAT 51900 Introduction to Probability (3 cr.)
P: 261. See course listing for STAT 519.
MATH 52000 Boundary Value Problems of Differential Equations (3 cr.)
P: 261 and 266. Sturm-Liouville theory, singular boundary conditions, orthogonal expansions, separation of variables in partial differential equations, and spherical harmonics.

MATH 52200 Qualitative Theory of Differential Equations (3 cr.)
P: 266 and 351. Nonlinear ODEs, critical points, stability and bifurcations, perturbations, averaging, nonlinear oscillations and chaos, and Hamiltonian systems.

MATH 52300 Introduction to Partial Differential Equations (3 cr.)
P: 266 and 510, or consent of instructor. Method of characteristics for quasilinear first-order equations, complete integral, Cauchy-Kowalewsky theory, classification of second-order equations in two variables, canonical forms, difference methods of hyperbolic and parabolic equations, and Poisson integral method for elliptic equations.

MATH 52500 Introduction to Complex Analysis (3 cr.)
P: 261 and 266. Complex numbers and complex-valued functions; differentiation of complex functions; power series, uniform convergence; integration, contour integrals; and elementary conformal mapping.

MATH 52600 Principles of Mathematical Modeling (3 cr.)
P: 266 and 510, or consent of instructor. Ordinary and partial differential equations of physical problems, simplification, dimensional analysis, scaling, regular and singular perturbation theory, variational formulation of physical problems, continuum mechanics, and fluid flow.

MATH 52700 Advanced Mathematics for Engineering and Physics I (3 cr.)
P: 266 and 351 or 511. Linear algebra, systems of ordinary differential equations, Laplace transforms, Fourier series and transforms, and partial differential equations.

MATH 52800 Advanced Mathematics for Engineering and Physics II (3 cr.)
P: 537 or consent of instructor. Divergence theorem, Stokes's Theorem, complex variables, contour integration, calculus of residues and applications, conformal mapping, and potential theory.

MATH 53000 Functions of a Complex Variable I (3 cr.)

MATH 53100 Functions of a Complex Variable II (3 cr.)

STAT 53200 Elements of Stochastic Processes (3 cr.)
P: 519. See course listing for STAT 532.

MATH 53500 Theoretical Mechanics (3 cr.)
P: 266 and PHYS 152. Kinematics and dynamics of systems of particles and of rigid bodies, Lagrange and Hamilton-Jacobi equations, oscillations about equilibrium, Hamiltonian systems, integral invariants, and transformation theory.

MATH 53600 Perturbation and Asymptotic Analysis (3 cr.)
P: 525 or 530, and 523. Matched asymptotic expansions, inner and outer expansions, strained coordinates and multiple scales, and turning point analysis.

MATH 53700 Applied Mathematics for Scientists and Engineers I (3 cr.)
P: 261, 266, and consent of instructor. Covers theories, techniques, and applications of partial differential equations, Fourier transforms, and Laplace transforms. Overall emphasis is on applications to physical problems.

MATH 54400 Real Analysis and Measure Theory (3 cr.)
P: 444 or consent of instructor. Algebra of sets, real number system, Lebesgue measure, measurable functions, Lebesgue integration, differentiation, absolute continuity, Banach spaces, metric spaces, general measure and integration theory, and Riesz representation theorem.

MATH 54500 Principles of Analysis II (3 cr.)
P: 544. Continues the study of measure theory begun in 544.

MATH 54600 Introduction to Functional Analysis (3 cr.)

MATH 54700 Analysis for Teachers I (3 cr.)
P: 261. Set theory, logic, relations, functions, Cauchy's inequality, metric spaces, neighborhoods, and Cauchy sequence.

MATH 54800 Analysis for Teachers II (3 cr.)
P: 547. Functions on a metric space, continuity, uniform continuity, derivative, chain rule, Riemann integral, fundamental theorem of calculus, and double integrals.

MATH 54900 Applied Mathematics for Secondary School Teachers (3 cr.)
P: 266 and 351. Summer, odd-numbered years. Applications of mathematics to problems in the physical sciences, social sciences, and the arts. Content varies. May be repeated for credit with the consent of the instructor.

MATH 55000 Algebra for Teachers I (3 cr.)
MATH 55100 Algebra for Teachers II (3 cr.)

MATH 55200 Applied Computational Methods II (3 cr.)
P: 559 and consent of instructor. The first part of the course focuses on numerical integration techniques and methods for ODEs. The second part concentrates on numerical methods for PDEs based on finite difference techniques with brief surveys of finite element and spectral methods.

MATH 55300 Introduction to Abstract Algebra (3 cr.)
P: 453 or consent of instructor. Group theory: finite abelian groups, symmetric groups, Sylow theorems, solvable groups, Jordan-Holder theorem. Ring theory: prime and maximal ideals, unique factorization rings, principal ideal domains, Euclidean rings, and factorization in polynomial and Euclidean rings. Field theory: finite fields, Galois theory, and solvability by radicals.

MATH 55400 Linear Algebra (3 cr.)

MATH 55900 Applied Computational Methods I (3 cr.)

MATH 56100 Projective Geometry (3 cr.)
P: 351. Projective invariants, Desargues’ theorem, cross-ratio, axiomatic foundation, duality, consistency, independence, coordinates, and conics.

MATH 56200 Introduction to Differential Geometry and Topology (3 cr.)
P: 351 and 445. Smooth manifolds, tangent vectors, inverse and implicit function theorems, submanifolds, vector fields, integral curves, differential forms, the exterior derivative, DeRham cohomology groups, surfaces in E3, Gaussian curvature, two-dimensional Riemannian geometry, and Gauss-Bonnet and Poincaré theorems on vector fields.

MATH 56300 Advanced Geometry (3 cr.)
P: 300 or consent of instructor. Topics in Euclidean and non-Euclidean geometry.

MATH 56700 Dynamical Systems I (3 cr.)
P: 545, 571 Fundamental concepts and examples, one-dimensional systems, symbolic dynamics, topological entropy, hyperbolicity, structural stability, bifurcations, invariant measures, ergodicity.

MATH 57100 Elementary Topology (3 cr.)
P: 444. Topological spaces, metric spaces, continuity, compactness, connectedness, separation axioms, nets, and function spaces.

MATH 57200 Introduction to Algebraic Topology (3 cr.)
P: 571. Singular homology theory, Ellenberg-Steenrod axioms, simplicial and cell complexes, elementary homotopy theory, and Lefschetz fixed point theorem.

MATH 57400 Mathematical Physics I (3 cr.)
P: 545 Topics in special functions, representation theory, spectral theory, modern differential geometry and topology, rigorous results in statistical physics.

MATH 57800 Mathematical Modeling of Physical Systems I (3 cr.)
P: 266, PHYS 152, PHYS 251, and consent of instructor. Linear systems modeling, mass-spring-damper systems, free and forced vibrations, applications to automobile suspension, accelerometer, seismograph, RLC circuits, passive and active filters, applications to crossover networks and equalizers, nonlinear systems, stability and bifurcation, dynamics of a nonlinear pendulum, van der Pol oscillator, chemical reactor, etc., introduction to chaotic dynamics, identifying chaos, chaos suppression and control, computer simulations, and laboratory experiments.

MATH 58100 Introduction to Logic for Teachers (3 cr.)
P: 351. Not open to students with credit in 385. Logical connectives, rules of sentential inference, quantifiers, bound and free variables, rules of inference, interpretations and validity, theorems in group theory, and introduction to set theory.

MATH 58300 History of Elementary Mathematics (3 cr.)
P: 261. A survey and treatment of the content of major developments of mathematics through the eighteenth century, with selected topics from more recent mathematics, including non-Euclidean geometry and the axiomatic method.

MATH 58500 Mathematical Logic I (3 cr.)
P: 351. Formal theories for propositional and predicate calculus with study of models, completeness, and compactness. Formalization of elementary number theory; Turing machines, halting problem, and the undecidability of arithmetic.

MATH 58700 General Set Theory (3 cr.)
P: 351. Informal axiomatization of set theory, cardinal numbers, countable sets, cardinal arithmetic, order types, well-ordered sets and ordinal numbers, axiom of choice and equivalences, paradoxes of intuitive set theory, and Zermelo-Fraenkel axioms.

MATH 58800 Mathematical Modeling of Physical Systems II (3 cr.)
P: 578. Depending on the interests of the students, the content may vary from year to year. Emphasis will be on
mathematical modeling of a variety of physical systems. Topics will be chosen from the volumes *Mathematics in Industrial Problems* by Avner Friedman. Researchers from local industries will be invited to present real-world applications. Each student will undertake a project in consultation with one of the instructors or an industrial researcher.

MATH 59800 Topics in Mathematics (1-5 cr.)
By arrangement. Directed study and reports for students who wish to undertake individual reading and study on approved topics.

Developmental Courses

MATH 00100 Introduction to Algebra (4 cr.)
Placement. Fall, spring, summer. Covers the material taught in the first year of high school algebra. Numbers and algebra, integers, rational numbers, equations, polynomials, graphs, systems of equations, inequalities, radicals. Credit does not apply toward any degree.

MATH–M 001 Introductory Algebra (6 cr.)
P: placement test or self election for students who need more time on task. Fall, spring. This is a first course in the study of algebra. Real numbers, algebraic expressions, solving equations, graphing equations, operations with polynomials, factoring polynomials, rational expressions and equations, solutions of systems of equations, radical expressions, and problem-solving strategies.

Graduate

MATH 61100 Methods of Applied Mathematics I (3 cr.)
P: consent of instructor. Introduction to Banach and Hilbert spaces, linear integral equations with Hilbert-Schmidt kernels, eigenfunction expansions, and Fourier transforms.

MATH 61200 Methods of Applied Mathematics II (3 cr.)
P: 611. Continuation of theory of linear integral equations; Sturm-Liouville and Weyl theory for second-order differential operators, distributions in n dimensions, and Fourier transforms.

MATH 62600 Mathematical Formulation of Physical Problems I (3 cr.)
P: graduate standing and consent of instructor. Topics to be chosen from the following: Tensor formulation of the field equations in continuum mechanics, fluid dynamics, hydrodynamic stability, wave propagation, and theoretical mechanics.

MATH 62700 Mathematical Formulation of Physical Problems II (3 cr.)
P: 626. Continuation of 626.

MATH 64200 Methods of Linear and Nonlinear Partial Differential Equations I (3 cr.)
P: 520, 523, and 611. Topics from linear and nonlinear partial differential equations, varied from time to time.

MATH 64600 Functional Analysis (3 cr.)
P: 546. Advanced topics in functional analysis, varying from year to year at the discretion of the instructor.

MATH 66700 Dynamical Systems II (3 cr.)
P: 567 Topics in dynamics. Continuation of MATH 567.

MATH 67200 Algebraic Topology I (3 cr.)
P: 572. Continuation of 572: cohomology, homotopy groups, fibrations, and further topics.

MATH 67300 Algebraic Topology II (3 cr.)
P: 672. continuation of 672, covering further advanced topics in algebraic and differential topology such as K-theory and characteristic classes.

MATH 67400 Mathematical Physics II (3 cr.)
P: 574 Topics in mathematical physics. Continuation of MATH 574.

MATH 69200 Topics in Applied Mathematics (1-3 cr.)

MATH 69300 Topics in Analysis (1-3 cr.)

MATH 69400 Topics in Differential Equations (1-3 cr.)

MATH 69700 Topics in Topology (1-3 cr.)

MATH 69900 Research Ph.D. Thesis (Arr. cr.)

Undergraduate Lower-Division

MATH 11100 Algebra (4 cr.)
P: 001 or M001 (with a minimum grade of C) or placement. Fall, spring, summer. Real numbers, linear equations and inequalities, systems of equations, polynomials, exponents, and logarithmic functions. Covers material in the second year of high school algebra. This course satisfies the prerequisites needed for MATH M118, M119, 130, 136, 153, 154, and STAT 301.

MATH 12300 Elementary Concepts of Mathematics (3 cr.)
Mathematics for liberal arts students; experiments and activities that provide an introduction to inductive and deductive reasoning, number sequences, functions and curves, probability, statistics, topology, metric measurement, and computers.

MATH 13000 Mathematics for Elementary Teachers I (3 cr.)
P: 111 or 110 (with a minimum grade of C-) or equivalent. Fall, spring, summer. Numeration systems, mathematical reasoning, integers, rationals, reals, properties of number systems, decimal and fractional notations, and problem solving.

MATH 13100 Mathematics for Elementary Teachers II (3 cr.)
P: 130. Fall, spring, summer. Number systems: numbers of arithmetic, integers, rationals, reals, mathematical systems, decimal and fractional notations; probability, simple and compound events, algebra review.

MATH 13200 Mathematics for Elementary Teachers III (3 cr.)
P: 130 and one year of high school geometry. Fall, spring, summer. Rationals, reals, geometric relationships,
properties of geometric figures, one-, two-, and three-dimensional measurement, and problem solving.

MATH 13600 Mathematics for Elementary Teachers (6 cr.)
P: 111 or 110 (with a minimum grade of C) or equivalent, and one year of high school geometry. Fall, spring, summer. 136 is a one-semester version of 130 and 132. Not open to students with credit in 130 or 132.

MATH 15300 Algebra and Trigonometry I (3 cr.)
P: 111 (with a minimum grade of C) or placement. Fall, spring, summer. 153-154 is a two-semester version of 159. Not open to students with credit in 159. 154 covers college-level algebra and, together with 154, provides preparation for 165, 221, and 231.

MATH 15400 Algebra and Trigonometry II (3 cr.)
P: 153 (with a minimum grade of C) or equivalent. Fall, spring, summer. 153-154 is a two-semester version of 159. Not open to students with credit in 159. 154 covers college-level trigonometry and, together with 153, provides preparation for 165, 221, and 231.

MATH 15900 Precalculus (5 cr.)
P: 111 (with a minimum grade of B) or placement. Fall, spring. 159 is a one-semester version of 153-154. Not open to students with credit in 153 or 154. 159 covers college-level algebra and trigonometry and provides preparation for 165, 221, and 231.

MATH 16300 Integrated Calculus and Analytic Geometry I (5 cr.)
P: 154 or 159 (with a minimum grade of C) or equivalent, and one year of geometry. Equiv. IU MATH M211. Fall, spring, summer I. Review of plane analytic geometry and trigonometry, functions, limits, differentiation, applications of differentiation, integration, the fundamental theorem of calculus, and applications of integration. An honors option is available in this course. Note: Effective Fall 2008, this course is offered as MATH 165.

MATH 16400 Integrated Calculus and Analytic Geometry II (5 cr.)
P: 163 (with a minimum grade of C-). Equiv. IU MATH M212. Fall, spring, summer I. Transcendental functions, techniques of integration, indeterminate forms and improper integrals, conics, polar coordinates, sequences, infinite series, and power series. An honors option is available in this course. Note: Effective Spring 2009, this course is offered as MATH 166.

MATH 16500 Analytic Geometry and Calculus I (4 cr.)
P: 159 or 154 (minimum grade of C) or equivalent, and one year of high school geometry. Fall, spring, summer I. Introduction to differential and integral calculus of one variable, with applications. Conic sections.

MATH 16600 Analytic Geometry and Calculus II (4 cr.)
P: 165 (minimum grade of C). Fall, spring, summer I. Continuation of MA 165. Vectors in two and three dimensions. Techniques of integration, infinite series, polar coordinates, surfaces in three dimensions.

MATH 17100 Multidimensional Mathematics (3 cr.)
P: 159 or 154 (minimum grade of C) or equivalent, and one year of high school geometry. An introduction to mathematics in more than two dimensions. Graphing of curves, surfaces and functions in three dimensions. Two and three dimensional vector spaces with vector operations. Solving systems of linear equations using matrices. Basic matrix operations and determinants.

MATH 19000 Topics in Applied Mathematics for Freshmen (3 cr.)
Treats applied topics in mathematics at the freshman level. Prerequisites and course material vary with the applications.

MATH 22100 Calculus for Technology I (3 cr.)
P: 154 or 159 (with a minimum grade of C-) or equivalent, and one year of geometry. Fall, spring, summer. Analytic geometry, the derivative and applications, and the integral and applications.

MATH 22200 Calculus for Technology II (3 cr.)
P: 221 (with a minimum grade of C-). Fall, spring, summer. Differentiation of transcendental functions, methods of integration, power series, Fourier series, and differential equations.

MATH 23100 Calculus for Life Sciences I (3 cr.)
P: 154 or 159 (with a minimum grade of C-) or equivalent, and one year of geometry. Limits, derivatives and applications. Exponential and logarithmic functions. Integrals, antiderivatives, and the Fundamental Theorem of Calculus. Examples and applications are drawn from the life sciences.

MATH 23200 Calculus for Life Sciences II (3 cr.)
P: 231 (with a minimum grade of C-). Matrices, functions of several variables, differential equations and solutions with applications. Examples and applications are drawn from the life sciences.

MATH 26100 Multivariate Calculus (4 cr.)
P: 164. Equiv. IU MATH M311. Fall, spring, summer. Spatial analytic geometry, vectors, curvilinear motion, curvature, partial differentiation, multiple integration, line integrals, and Green's theorem. An honors option for this course is available. Note: Effective Fall 2009, this course is offered under an updated course description, as below.

MATH 26100 Multivariate Calculus (4 cr.)
P: 164 and 171 (minimum grade of C in each). Spatial analytic geometry, vectors, space curves, partial differentiation, applications, multiple integration, vector fields, line integrals, Green's theorem, Stoke's Theorem and the Divergence Theorem.

MATH 26200 Linear Algebra and Differential Equations (4 cr.)
P: 164. C: 261. Fall, spring, summer. First-order equations, higher-order linear equations, initial and boundary value problems, power series solutions, systems of first-order equations, Laplace transforms, and applications. Requisite topics of linear algebra: vector spaces, linear independence, matrices, eigenvalues, and
eigenvectors. Note: Effective Fall 2009, this course is offered as MATH 266.

MATH 26600 Ordinary Differential Equations (3 cr.)
P: 164 and 171 (minimum grade of C in each). Fall, spring, summer. First order equations, second and nth order linear equations, series solutions, solution by Laplace transform, systems of linear equations.

MATH 27600 Discrete Math (3 cr.)
P or C: 165 or consent of instructor. Spring. Logic, sets, functions, integer algorithms, applications of number theory, mathematical induction, recurrence relations, permutations, combinations, finite probability, relations and partial ordering, and graph algorithms.

MATH 29000 Topics in Applied Mathematics for Sophomores (3 cr.)
Applied topics in mathematics at the sophomore level. Prerequisites and course material vary with the applications.

MATH–M 110 Fundamentals of Algebra (4 cr.)
P: 001 or M001 (with a minimum grade of C-) or placement. Intended primarily for liberal arts and business majors. Integers, rational and real numbers, exponents, decimals, polynomials, equations, word problems, factoring, roots and radicals, logarithms, quadratic equations, graphing, linear equations in more than one variable, and inequalities. This course satisfies the prerequisites needed for MATH M118, M119, 130, 136, and STAT 301.

MATH–M 118 Finite Mathematics (3 cr.)
P: 111 or 110 (with a minimum grade of C-) or equivalent. Fall, spring, summer. Set theory, logic, permutations, combinations, simple probability, conditional probability, Markov chains. An honors option is available in this course.

MATH–M 119 Brief Survey of Calculus I (3 cr.)
P: 111 or 110 (with a minimum grade of C-) or equivalent. Fall, Spring, Summer. Sets, limits, derivatives, integrals, and applications. An honors option is available in this course.

MATH–S 118 Honors Finite Mathematics (3 cr.)
P: Mastery of two years of high school algebra and consent of instructor. Designed for students of outstanding ability in mathematics. Covers all material of M118 and additional topics from statistics and game theory. Computers may be used in this course, but no previous experience is assumed.

MATH–S 119 Honors Brief Survey of Calculus I (3 cr.)
P: Mastery of two years of high school algebra and consent of instructor. Designed for students of outstanding ability in mathematics. Covers all material of M119 and additional topics. Computers may be used in this course, but no previous experience is assumed.

MATH–S 163 Honors Integrated Calculus and Analytic Geometry I (5 cr.)
P: Precalculus or trigonometry and consent of instructor. This course covers the same topics as MATH 163. However, it is intended for students having a strong interest in mathematics who wish to study the concepts of calculus in more depth and who are seeking mathematical challenge. Note: Effective Fall 2008, this course is offered as MATH S165.

MATH–S 164 Honors Integrated Calculus and Analytic Geometry II (5 cr.)
P: S163 (with a minimum grade of B-) or 163 (with a minimum grade of A-), and consent of instructor. This course covers the same topics as MATH 164. However, it is intended for students having a strong interest in mathematics who wish to study the concepts of calculus in more depth and who are seeking mathematical challenge. Note: Effective Spring 2009, this course is offered as MATH S166.

MATH–S 165 Honors Analytic Geometry and Calculus I (4 cr.)
P: Precalculus or trigonometry and consent of instructor. This course covers the same topics as MATH 165. However, it is intended for students having a strong interest in mathematics who wish to study the concepts of calculus in more depth and who are seeking mathematical challenge.

Upper-Division
EDUC–M 457 Methods of Teaching Senior High/Junior High/Middle School Mathematics (2-4 cr.)
P: 30 credit hours of mathematics. Study of methodology, heuristics of problem solving, curriculum design, instructional computing, professional affiliations, and teaching of daily lessons in the domain of secondary and/ or junior high/ middle school mathematics.

MATH 30000 Logic and the Foundations of Algebra (3 cr.)
P: 165. Fall. Logic and the rules of reasoning, theorem proving. Applications to the study of the integers; rational, real, and complex numbers; and polynomials. Bridges the gap between elementary and advanced courses. Recommended for prospective high school teachers.

MATH 33300 Chaotic Dynamical Systems (3 cr.)
P: 166 or 222. Spring. The goal of the course is to introduce some of the spectacular new discoveries that have been made in the past twenty years in the field of mathematics known as dynamical systems. It is intended for undergraduate students in mathematics, science, or engineering. It will include a variety of computer experiments using software that is posted on the Web.

MATH 35100 Elementary Linear Algebra (3 cr.)
P: 261. Not open to students with credit in 511. Fall, spring. Systems of linear equations, matrices, vector
spaces, linear transformations, determinants, inner product spaces, eigenvalues, and applications.

MATH 37500 Theory of Interest (3 cr.)
P: 261. An introduction to the theory of finance, including such topics as compound interest, annuities certain, amortization schedules, sinking funds, bonds, and related securities.

MATH 39000 Topics in Applied Mathematics for Juniors (3 cr.)
Applied topics in mathematics at the junior level. Prerequisites and course material vary with the applications.

MATH 39800 Internship in Professional Practice (1-3 cr.)
P: Approval of Department of Mathematical Sciences. Professional work experience involving significant use of mathematics or statistics. Evaluation of performance by employer and Department of Mathematical Sciences. May count toward major requirements with approval of the Department of Mathematical Sciences. May be repeated with approval of the Department of Mathematical Sciences for a total of 6 credits.

MATH 41400 Numerical Methods (3 cr.)
P: 266 and a course in a high-level programming language. Not open to students with credit in CSCI 512. Fall. Error analysis, solution of nonlinear equations, direct and iterative methods for solving linear systems, approximation of functions, numerical differentiation and integration, and numerical solution of ordinary differential equations.

MATH 42600 Introduction to Applied Mathematics and Modeling (3 cr.)
P: 266 and PHYS 152. Introduction to problems and methods in applied mathematics and modeling. Formulation of models for phenomena in science and engineering, their solutions, and physical interpretation of results. Examples chosen from solid and fluid mechanics, mechanical systems, diffusion phenomena, traffic flow, and biological processes.

MATH 44400 Foundations of Analysis (3 cr.)
P: 261. Fall. Set theory, mathematical induction, real numbers, completeness axiom, open and closed sets in Rm, sequences, limits, continuity and uniform continuity, inverse functions, differentiation of functions of one and several variables.

MATH 44500 Foundations of Analysis II (3 cr.)
P: 444. Spring. Continuation of differentiation, the mean value theorem and applications, the inverse and implicit function theorems, the Riemann integral, the fundamental theorem of calculus, point-wise and uniform convergence, convergence of infinite series, and series of functions.

MATH 45300 Beginning Abstract Algebra (3 cr.)
P: 351 or consent of instructor. Fall. Basic properties of groups, rings, and fields, with special emphasis on polynomial rings.

MATH 45600 Introduction to the Theory of Numbers (3 cr.)

MATH 46200 Elementary Differential Geometry (3 cr.)

MATH 46300 Intermediate Euclidean Geometry for Secondary Teachers (3 cr.)
P: 300 and one year of high school geometry, or consent of instructor. Spring. History of geometry. Ruler and compass constructions, and a critique of Euclid. The axiomatic method, models, and incidence geometry. Presentation, discussion and comparison of Hilbert’s, Birkhoff’s, and SMSG’s axiomatic developments.

MATH 49000 Topics in Mathematics for Undergraduates (1-5 cr.)
By arrangement. Open to students only with the consent of the department. Supervised reading and reports in various fields.

MATH 49100 Seminar in Competitive Math Problem-Solving (1-3 cr.)
Approval of the director of undergraduate programs is required. This seminar is designed to prepare students for various national and regional mathematics contests and examinations such as the Putnam Mathematical Competition, the Indiana College Mathematical Competition and the Mathematical Contest in Modeling (MCM), among others. May be repeated twice for credit.

MATH 49200 Capstone Experience (1-3 cr.)
Credits by arrangement.

MATH 49500 TA Instruction (0 cr.)
For teaching assistants. Intended to help prepare TAs to teach by giving them the opportunity to present elementary topics in a classroom setting under the supervision of an experienced teacher who critiques the presentations.

Physics

Advanced Undergraduate and Graduate

PHYS 50100 Physical Science (3 cr.)
Fall, Spring. Survey of the physical sciences with emphasis on methods of presentation appropriate to the elementary school. Graduate credit is extended only for elementary school teacher programs.

PHYS 51000 Physical Mechanics (3 cr.)
P: 310 or equivalent, and courses in calculus and differential equations. Mechanics of particles, rigid bodies, and vibrating systems.

PHYS 51500 Thermodynamics (3 cr.)
P: 310 and 330 and a course in differential equations or advanced calculus. Equilibrium states, the concept of heat, and the laws of thermodynamics; the existence and properties of the entropy; different thermodynamic potentials and their uses; phase diagrams; introduction of statistical mechanics and its relation to thermodynamics; and treatment of ideal gases.

PHYS 51700 Statistical Physics (3 cr.)
P: 342, 510, and 515 or equivalent. Laws of thermodynamics; Boltzmann and quantum statistical distributions, with applications to properties of gases, specific heats of solids, paramagnetism, black-body radiation, and Bose-Einstein condensation; Boltzmann transport equation and transport properties of gases; and Brownian motion and fluctuation phenomena.

PHYS 52000 Mathematical Physics (3 cr.)
P: 310, 322, 330, or consent of instructor. Vectors and vector operators, tensors, infinite series, analytic functions and the calculus of residues, partial differential equations, and special functions of mathematical physics. When interests and preparation of students permit, calculus of variations and/or group theory are covered.

PHYS 52200 Coherent Optics and Quantum Electronics (3 cr.)

PHYS 53000 Electricity and Magnetism (3 cr.)
P: 330 or equivalent. Electrostatic problems; theory of dielectrics; theory of electric conduction; electromagnetic effects due to steady and changing currents; magnetic properties of matter; Maxwell’s equations; and electromagnetic radiation.

PHYS 53300 Principles of Magnetic Resonance (3 cr.)
P: 550 or equivalent. Magnetic resonance in bulk matter; classical and quantum descriptions, relaxation, CW and pulse experiments, interactions and Hamiltonians. Magnetic interactions between electrons and nuclei; nuclear quadrupole interaction, crystal field interactions, and effect of molecular motion. High-resolution NMR spectra; EPR of free-radical solutions; and powder patterns.

PHYS 54500 Solid-State Physics (3 cr.)
P: an undergraduate course in modern physics. Crystal structure; lattice vibrations; free electron theory of solids; band theory of solids; semiconductors; superconductivity; magnetism; and magnetic resonance.

PHYS 55000 Introduction to Quantum Mechanics (3 cr.)
P: 342 and at least one other junior-level course in each of mathematics and physics or equivalent. Brief historical survey; waves in classical physics; wavepackets; uncertainty principle; operators and wave functions; Schrödinger equation and application to one-dimensional problems; the hydrogen atom; electron spin; multielectron atoms; periodic table; molecules; periodic potentials; and Bloch wave functions.

PHYS 55600 Introductory Nuclear Physics (3 cr.)
P: 550 or equivalent. Theory of relativity; brief survey of systematics of nuclei and elementary particles; structure of stable nuclei; radioactivity; interaction of nuclear radiation with matter; nuclear reactions; particle accelerators; nuclear instruments; fission; and nuclear reactors.

PHYS 57000 Selected Topics in Physics (3 cr.)
Specialized topics in physics selected from time to time.

PHYS 59000 Reading and Research (1-3 cr.)

PHYS 59300 Advanced Physics Laboratory (3 cr.)

PHYS 59300 Advanced Physics Laboratory (3 cr.)

Graduate

PHYS 60000 Methods of Theoretical Physics (3 cr.)
P: graduate standing in physics or consent of instructor. 600 is designed to provide first-year physics graduate students with the mathematical background for subsequent studies of advanced mechanics, electrodynamics, and quantum theory. Topics include functions of a complex variable, ordinary and partial differential equations, eigenvalue problems, and orthogonal functions. Green’s functions, matrix theory, and tensor analysis in three and four dimensions.

PHYS 60100 Methods of Theoretical Physics II (3 cr.)
P: 600 or equivalent. A continuation of 600.

PHYS 61000 Advanced Theoretical Mechanics (3 cr.)
P: 510 or equivalent. Lagrangian and Hamiltonian mechanics; variational principles; canonical transformations; Hamilton-Jacobi theory; theory of small oscillations; and Lagrangian formulation for continuous systems and field.

PHYS 61700 Statistical Mechanics (3 cr.)
P: 660 or equivalent. Classical and quantum statistical mechanics.

PHYS 63000 Advanced Theory of Electricity and Magnetism (3 cr.)

PHYS 63100 Advanced Theory of Electricity and Magnetism (3 cr.)
P: 630 or equivalent. Covariant formulation of electrodynamics; Lienard-Wiechert potentials; radiation from accelerated particles; Cerenkov radiation; dynamics of relativistic particles; radiation damping; and introduction to magnetohydrodynamics.

PHYS 63300 Advanced Topics in Magnetic Resonance (3 cr.)
P: 533 or consent of instructor. Rotation operators, coupling of angular momenta, Wigner-Eckhart theorem, and density matrix; theory of magnetic resonance,
relaxation in liquids, chemical exchange, double resonance, cross-polarization, and magic angle spinning; two-dimensional NMR, correlation spectroscopy, and exchange and NOE spec troscopies; application to biological macromolecules; time domain EPR; and lineshape under slow motion.

PHYS 66000 Quantum Mechanics I (3 cr.)

PHYS 66100 Quantum Mechanics II (3 cr.)

PHYS 67000 Selected Topics in Physics (1-3 cr.)
P: consent of instructor. Specialized topics in physics, varied from time to time.

PHYS 68500 Physics Seminar (0-1 cr.)
Offered on Pass/Fail basis only. May be repeated for credit. Weekly physics seminar presented by faculty and invited speakers from outside the department.

PHYS 69800 Research M.S. Thesis (Arr. cr.)

PHYS 69900 Research (Arr. cr.) Ph.D. thesis

Undergraduate

PHYS 01000 Pre-Physics (3 cr.)
P: MATH 159, or MATH 153 and 154, or equivalent. Fall, Spring. For students not ready to take the algebra- and trigonometry-based courses in physics (218 and P201). Basic concepts of physics. Methods of analyzing physics problems. Setting up equations for physics problems. Interpreting information in physics problems. Analyzing and presenting the results of laboratory measurements. Extensive drill in these topics.

PHYS 10000 Physics in the Modern World (5 cr.)
P: Introductory high school mathematics. Spring, day. Ideas, language, methods, and impact of physics today.

PHYS 14000 Short Courses in Physics (1 cr.)
Five-week courses on a variety of topics related to the physical world. Examples of topics include: Waves and Particles Are the Same Thing, Relativity, Quarks and Other Inhabitants of the Zoo, Why Things Work and Why They Don't, Lasers and Holography, and Physics of Star Trek.

PHYS 15200 Mechanics (4 cr.)
P or C: MATH 166. Equiv. IU PHYS P221. Fall, day; Spring, day, night; Summer, day. Statics, uniform and accelerated motion; Newton's laws; circular motion; energy, momentum, and conservation principles; dynamics of rotation; gravitation and planetary motion; properties of matter; and simple harmonic and wave motion. For more information, visit our Web page at webphysics.iupui.edu/introphysics.

PHYS 20000 Our Physical Environment (3 cr.)
Fall, night; Spring, night. A nonmathematical introduction to physical concepts and methods by means of examples from daily life and current technological applications.

PHYS 21800 General Physics (4 cr.)
P: MATH 159 or equivalent. Fall, night; Spring, night; Summer, day. Mechanics, conservation laws, gravitation; simple harmonic motion and waves; kinetic theory, heat, and thermodynamics for students in technology fields.

PHYS 21900 General Physics (4 cr.)
P: 218. Fall, night; Spring, night; Summer, day. Electricity, light, and modern physics.

PHYS 25100 Heat, Electricity, and Optics (5 cr.)
P: either P201 or 152. P or C: MATH 261. Equiv. IU PHYS P222. Fall, day, night; spring, day; summer, day. Heat, kinetic theory, elementary thermodynamics, and heat transfer. Electrostatics, electrical currents and devices. Magnetism and electromagnetic radiation. Optics. For more information, visit the Web site at webphysics.iupui.edu/introphysics.

PHYS 29900 Introduction to Computational Physics (2 cr.)
P: 152. Fall. Application of computational techniques to physical concepts. Topics include mechanics, oscillations, chaos, random processes, etc.

PHYS 30000 Introduction to Elementary Mathematical Physics (3 cr.)
P: P202 or 251, and MATH 261. Spring. Brief but practical introduction to various mathematical methods used in intermediate-level physics courses. Vector analysis, orthogonal coordinate systems, matrices. Fourier methods, complex numbers, special functions, and computational methods. Emphasis will be on examples and the application of these methods to physics problems.

PHYS 31000 Intermediate Mechanics (4 cr.)
P: P202 or 251 and 300 or MATH 266. Fall. For students familiar with calculus. Elements of vector algebra; statics of particles and rigid bodies; theory of couples; principle of virtual work; kinematics; dynamics of particles and rigid bodies; work, power, and energy; and elements of hydromechanics and elasticity.

PHYS 33000 Intermediate Electricity and Magnetism (3 cr.)
P: P202 or 251 and 300 or MATH 266. Spring. Electrostatics; electric currents; magnetostatics; electromagnetic induction; Maxwell's equations; electromagnetic waves.

PHYS 34200 Modern Physics (3 cr.)
PHYS 35300 Electronics Laboratory (2 cr.)
P: 251. Spring. Introduction to electronic circuits and test equipment for scientists. Circuits including LRC networks, diodes, transistors, amplifiers, and digital components will be constructed and measured using oscilloscopes, function generators, and digital multimeters. Results will be analyzed in terms of basic circuit properties such as impedance and frequency response.

PHYS 40000 Physical Optics (3 cr.)

PHYS 40100 Physical Optics Laboratory (2 cr.)

PHYS 41600 Thermal Physics (3 cr.)

PHYS 44200 Quantum Mechanics (3 cr.)
P: 342, and 310 or 330. Fall. Inadequacies of classical physics; wave packets and Schrödinger equation, one-dimensional problems; operator formulation of quantum mechanics; linear harmonic oscillator; angular momentum; hydrogen atom; and Pauli principle and application to helium atom.

PHYS 47000 Reading in Special Topics (1-3 cr.)

PHYS 48000 Solar Energy Usage (3 cr.)
P: MATH 166 or equivalent, and two courses in general physics. Theoretical and practical aspects, including collector design, modeling of solar systems, economic evaluation of solar alternatives, and photovoltaics.

PHYS 49000 Undergraduate Reading and Research (1-3 cr.)

PHYS–P 201 General Physics I (5 cr.)
P: MATH 159 or equivalent. Fall, day; Spring, night; Summer, day. Newtonian mechanics, wave motion, heat, and thermodynamics. Application of physical principles to related scientific disciplines, especially life sciences. Intended for students preparing for careers in the life sciences and the health professions. Three lectures, one discussion section, and one two-hour laboratory period each week.

PHYS–P 202 General Physics II (5 cr.)
P: P201. Fall, night; Spring, day; Summer, day. Electricity and magnetism; geometrical and physical optics; introduction to concepts of relativity, quantum theory, and atomic and nuclear physics. Three lectures, one discussion section, and one two-hour laboratory period each week.

Psychology
Graduate Level

PSY 51800 Memory and Cognition (3 cr.) 518 Memory and Cognition (3 cr.) A graduate-level survey of theories and research concerned with the acquisition, retention, and retrieval of information. Topics include amnesia, eyewitness memory, forgetting, developmental trends in memory, related issues in attention, language processing, and problem solving.

PSY 54000 History of Psychology (3 cr.) 540 History of Psychology (3 cr.) P: Nine (9) credit hours of psychology. A review of the philosophical, theoretical, and methodological issues that entered into the development of modern psychology. Emphasis on historical themes that continue to be active in the science and profession of psychology.

PSY 56500 Interpersonal Relations (3 cr.) 565 Interpersonal Relations (3 cr.) P: Nine (9) credit hours of psychology. Review of major current theoretical formulations of the interpersonal relationship, including a discussion of some of the more prominent research. Focus is primarily on two-person interpersonal relations.

PSY 57000 Industrial Psychology (3 cr.) 570 Industrial Psychology (3 cr.) Survey of the applications of psychological principles and of research methodology to the various human problems in the industry, such as personnel selection and appraisal, the organizational and social context of human work, the job and work situation, human errors and accidents, and psychological aspects of consumer behavior.

PSY 57200 Organizational Psychology (3 cr.) 572 Organizational Psychology (3 cr.) A survey of basic behavioral science research and thinking as these contribute to the understanding of individual, dyadic, group, intergroup, and other large organization behavioral phenomena. The topics covered include motivation, perception, attitudes and morale, communication, leadership, conflict, problem solving, behavior change, and organizational effectiveness.

PSY 57400 Psychology of Industrial Training (3 cr.) 574 Psychology of Industrial Training (3 cr.) P: Three (3) credit hours of psychology. Use of psychological measurement techniques in assessing training needs and evaluating training effectiveness and the application of learning research and theory to industrial training.

PSY 59000 Individual Research Problems (1-3 cr.) 590 Individual Research Problems (1-3 cr.) P: Twelve (12) credit hours of psychology and consent of instructor. Opportunity for students to study particular problems in any field of psychology or to learn research techniques under the guidance of a faculty member.

PSY 60000 Statistical Inference (3 cr.) 600 Statistical Inference (3 cr.) P: Student must be a degree-seeking student in psychology graduate program or have consent of instructor and B305 or equivalent. Emphasis on
principles underlying both parametric and nonparametric inference.

PSY 60100 Correlation and Experimental Design (3 cr.)
601 Correlation and Experimental Design (3 cr.) P: 600. Continuation of 600, with emphasis on the design and analysis of experiments.

PSY 60500 Applied Multivariate Analysis (3 cr.)
605 Applied Multivariate Analysis (3 cr.) P: 600. A survey of the most frequently employed multivariate research techniques, such as multivariate generalizations of univariate tests and analysis of variance, principal components, canonical analysis, and discriminant analysis. A central theme of the course is the general linear model, both univariate and multivariate. A multipurpose program for this model provides the student with practical experience in conducting multivariate research.

PSY 60800 Measurement Theory and the Interpretation of Data (3 cr.)
608 Measurement Theory and the Interpretation of Data (3 cr.) P: 600 and B307, or equivalent. The theory of measurement and the development of reliability and the Spearman-Brown equations, true scores and variables, and correction for attenuation. Variance or covariance of combinations of variables. Item analysis and test construction strategies. Reliability and validity of measurements and the influence of measurement error and measurement threats to research design.

PSY 61100 Factor Analysis (3 cr.)
611 Factor Analysis (3 cr.) P: 600. Theory and applications of factor analysis in psychological research.

PSY 61500 Introduction to Psychobiology (3 cr.)
615 Introduction to Psychobiology (3 cr.) P: consent of instructor. A survey of the integrated neurosciences emphasizing physiological psychology. Neural processes of sensory and motor function, arousal and sleep, motivation, learning and memory, language function, and personality disorders will be presented with selected coverage of neuroanatomy, neurophysiology, neuropharmacology, and neuroendocrinology. Both normal and pathological functions will be covered.

PSY 62200 Animal Learning (3 cr.)
622 Animal Learning (3 cr.) P: consent of instructor. A survey of the methods, problems, and research in Pavlovian, instrumental, and operant conditioning. Current issues and attempts at theoretical integration are highlighted. Emphasis is also given to the empirical and conceptual foundations of the present views on the mechanisms governing learned behavior.

PSY 62400 Human Learning and Memory (3 cr.)
624 Human Learning and Memory (3 cr.) P: a first course in human learning and consent of instructor. Selected survey of important problems in the encoding, storage, and retrieval of laboratory and naturalistic events.

PSY 62800 Perceptual Processes (3 cr.)
628 Perceptual Processes (3 cr.) This course is an advanced introduction to the psychology of perception. The course emphasizes visual and auditory perception, reviewing basic concepts, methodologies, research findings, and theoretical approaches. Theories of direct perception, constructivist perception, and computational vision are discussed in detail.

PSY 64000 Survey of Social Psychology I (3 cr.)
640 Survey of Social Psychology I (3 cr.) P: B370 or equivalent. An extensive survey of methods, research, and theory in social psychology.

PSY 64600 Seminar in Social-Personality Psychology (3 cr.)
646 Seminar in Social-Personality Psychology (3 cr.) P: consent of instructor. A seminar covering a special topic in personality or social psychology. Specific topic varies from seminar to seminar.

PSY 65500 Cognitive Development (3 cr.)
655 Cognitive Development (3 cr.) P: consent of instructor. An analysis of research findings and current theories relevant to the development of cognitive processes. Emphasis on the changing characteristics of some fundamental cognitive processes. Special attention is given to verbal behavior and language.

PSY 68000 Seminar in Industrial-Personnel Psychology (3 cr.)
680 Seminar in Industrial-Personnel Psychology (3 cr.) P: 570, 572, and 601. Extensively surveys the various areas of industrial-personnel psychology (e.g., selection, placement, training, performance appraisal). Provides a critical and up-to-date review of recent and classical research in these areas.

PSY 68100 Seminar in Research Methodologies of Industrial/Organizational Psychology (3 cr.)
681 Seminar in Research Methodologies of Industrial/Organizational Psychology (3 cr.) P: 570, 572, 601, or consent of instructor. Intensive analysis of application of various research and statistical methods to the study of human behavior in organizational settings.

PSY 68200 Advanced Seminar in Industrial/Organizational Psychology (3 cr.)
682 Advanced Seminar in Industrial/Organizational Psychology (3 cr.) P: 570, 572, or equivalent. Special topics in industrial and organizational psychology are offered on a rotating basis. Examples of the special topics are work motivation, leadership, advanced selection and placement, and performance appraisal. One topic will be treated each semester.

PSY 68300 Seminar in Industrial-Social Psychology (3 cr.)
683 Seminar in Industrial-Social Psychology (3 cr.) P: 570, 572, or equivalent. Study of research and theory emphasizing social perception, attitudes, supervisory behavior, employee participation, motivation, and organizational structure.

PSY 68400 Practicum in Industrial/Organizational Psychology (3 cr.)
684 Practicum in Industrial/Organizational Psychology (3 cr.) P: 570, 572, and consent of instructor. Practical experience in the development and implementation of field research in organizational settings. Gives students the opportunity to spend eight hours per week in local business organizations to gain experience and skills in industrial/organizational psychology.

PSY 69800 Research M.S. Thesis (3 cr.)
698 Research M.S. Thesis (3 cr.)

PSY 69900 Research Ph.D. Thesis (0-12 cr.)
699 Research Ph.D. Thesis (0-12 cr.)

PSY–I 501 Multicultural Counseling (3 cr.)
I501 Multicultural Counseling (3 cr.) P: graduate standing. This
course explores the role of increasing diversity in the U.S. population and how it will affect the delivery of mental health services. The focus of the course is on different ethnic and minority groups, their customs and values, and the impact that these cultural factors have on the utilization of psychological services.

PSY–I 544 Psychobiology of Learning and Motivation (3 cr.) I544 Psychobiology of Learning and Motivation (3 cr.) P: B320 or equivalent. The course examines past and present biologically based theories of learned and motivated behavior. Neural processes of feeding, drinking, aggression, fear, anxiety, and sexual behavior will be emphasized. Selected coverage of behavioral research principles used to investigate these processes also will be discussed.

PSY–I 545 Psychopharmacology (3 cr.) I545 Psychopharmacology (3 cr.) P: 615 or consent of instructor. A survey of the effects of drugs on behavior, cognitive functioning, and emotions. Emphasis will be placed on the practical advantages of understanding how psychotropic drugs work, and on how the brain functions in health and disease. Students will be exposed to the most current theories and research in the field.

PSY–I 549 Introduction to Vocational Rehabilitation (3 cr.) I549 Introduction to Vocational Rehabilitation (3 cr.) P: Nine (9) credit hours of psychology. Philosophy, procedures, and practices underlying the vocational rehabilitation movement, including the historical, social, cultural, and economic factors and legislation that have contributed to its rapid development.

PSY–I 555 Medical and Psychosocial Aspects of Chronic Illness (3 cr.) I555 Medical and Psychosocial Aspects of Chronic Illness (3 cr.) P: Nine (9) credit hours of psychology including I549. Provides medical information for rehabilitation counselors and introduces students to medical terminology. Includes knowledge of the etiology, prognosis, methods of treatment, and effects of disabling conditions, and implications for the rehabilitation counselor. Counselor relationships with other health-related personnel are emphasized.

PSY–I 580 Survey of Clinical Approaches with Children and Adolescents (3 cr.) I580 Survey of Clinical Approaches with Children and Adolescents (3 cr.) P: Nine (9) credit hours in psychology. Introduction to the following as they relate to children and adolescents: (1) psychopathological disorders and behavior problems, (2) theories of psychopathology and behavior problems, (3) evaluation techniques, and (4) therapeutic and behavioral change procedures. This is a lecture course.

PSY–I 591 Psychopathology (3 cr.) I591 Psychopathology (3 cr.) P: enrollment in psychology graduate program or consent of instructor. An intensive survey of the methods, theories, and research concerning the nature, causes, and development of psychopathology. An evaluation of current systems of assessment and classification of abnormal behavior is emphasized.

PSY–I 595 Seminar in Teaching Psychology (0-3 cr.) I595 Seminar in Teaching Psychology (0-3 cr.) P: consent of the Department of Psychology. A problem-solving approach to teaching psychology at IUPUI. Planning the course; anticipating problems; and dealing with ongoing teaching problems. Current faculty members will present their innovative techniques. Participants will evaluate each other's classroom performance.

PSY–I 613 Psychiatric Rehabilitation (3 cr.) I613 Psychiatric Rehabilitation (3 cr.) P: consent of instructor. A seminar examining recent developments in the rehabilitation of persons with severe psychiatric disabilities. Covers assertive case management, vocational approaches, clubhouse models, residential alternatives, psychoeducation, and the consumer movement. Field observations complement classroom instruction. Issues in program planning and cost effectiveness will be discussed.

PSY–I 614 Behavioral Medicine in Rehabilitation (3 cr.) I614 Behavioral Medicine in Rehabilitation (3 cr.) P: consent of instructor. The theory and practice of behavioral medicine will be explored. Emphasis is on the application of behavioral principles to individuals suffering from various chronic diseases or disabilities including spinal cord injury, chronic pain, cancer, diabetes, strokes, cardiovascular diseases, and epilepsy.

PSY–I 618 Interventions in Health Psychology (3 cr.) I618 Interventions in Health Psychology (3 cr.) P: consent of instructor. The goal of the course is to familiarize students with clinical interventions and research relevant to health problems and lifestyle. This will enable students to critically evaluate the work that has been accomplished, and to design and implement intervention protocols.

PSY–I 643 Field Methods and Experimentation (3 cr.) I643 Field Methods and Experimentation (3 cr.) P: 600. Covers methods appropriate for field experimentation and program evaluation. Topics will include quasi-experimental designs, sampling procedures, and issues associated with program evaluation.

PSY–I 650 Developmental Psychology (3 cr.) I650 Developmental Psychology (3 cr.) P: consent of instructor. Major concepts, principles, and facts concerning the biological and environmental influences on behavioral and psychological development. Particular emphasis on essential principles of ontogenetic development (lifespan) emerging from current research in genetics and psychology.

PSY–I 664 Psychological Assessment in Rehabilitation I (3 cr.) I664 Psychological Assessment in Rehabilitation I (3 cr.) P: consent of instructor. Presentation of general principles of psychological assessment, professional practice, interviewing, intelligence/cognitive assessment, and psychological report writing. Supervised practice in the development of direct service skills in interviewing, behavioral observation, and psychometric assessment of cognitive abilities. Emphasis on functional implications of test results for rehabilitation populations.

PSY–I 665 Intervention I: Counseling Approaches (3 cr.) I665 Intervention I: Counseling Approaches
PSY—I 666 Intervention II: Cognitive Behavioral Interventions (3 cr.) I666 Intervention II: Cognitive Behavioral Interventions (3 cr.) P: consent of instructor. Theory, research, and clinical application of cognitive-behavioral therapy (CBT). Addresses the history and development of CBT, assessment and intake interview process, CBT intervention techniques, and CBT treatment of several disorders. Relevant multicultural issues will also be discussed.

PSY—I 669 Psychological Assessment in Rehabilitation II (3 cr.) I669 Psychological Assessment in Rehabilitation II (3 cr.) P: I664 and consent of instructor. Presentation of psychometric foundations and the basic prediction model in personality/interest assessment. Coverage of the history of personality, assessment, personality development, and supervised clinical practice in personality/interest assessment in rehabilitation. Emphasis on prediction of everyday functioning.

PSY—I 670 Ethical, Legal, and Cultural Issues in Psychology (3 cr.) I670 Ethical, Legal, and Cultural Issues in Psychology (3 cr.) P: admission to graduate training in psychology or consent of instructor. Exploration of models of ethical decision making. Examination of ethical principles and legal mandates that apply to professional psychology including psychologists’ roles in health care service delivery, consultation (clinical and organizational), research, and teaching. Examination of cultural issues, including issues related to ethnicity, age, gender, religion, and sexual orientation.

PSY—I 675 Human Neuropsychology (3 cr.) I675 Human Neuropsychology (3 cr.) P: consent of instructor. Critical examination of neural models for human behavior: hemispheric specialization and integration, sensation/perception, motor skills, language, spatial processing, attention, memory, executive operations, and gender differences.

PSY—I 676 Principles of Clinical Neuropsychology (2 cr.) I676 Principles of Clinical Neuropsychology (2 cr.) P: consent of instructor. Application of theoretical models of brain-behavior relationships to evaluation of patients with suspected nervous system disorders. Review of neuropsychological profiles associated with various neurological and psychiatric disorders. Examination of ethical/cultural issues in neuropsychological evaluation. This course does not carry School of Science credit. Equiv. to IU PSY P101 and PU PSY 120. Fall, Spring, Summer.

PSY—I 677 Neuropsychological Assessment Lab (1 cr.) I677 Neuropsychological Assessment Lab (1 cr.) P: I664 and consent of instructor. Supervised practice of rehabilitation psychology and case management in a rehabilitation setting under supervision of the Department of Psychology and the agency.

Undergraduate Level

PSY—B 103 Orientation to a Major in Psychology (1 cr.) I697 Internship in Clinical Psychology (0-9 cr.) P: consent of instructor. Opportunities for application of theory and practice of rehabilitation psychology and case management in a rehabilitation setting under supervision of the Department of Psychology and the agency.

PSY—B 104 Psychology as a Social Science (3 cr.) B104 Psychology as a Social Science (3 cr.) P: consent of instructor. Introduction to scientific method, individual differences, personality, developmental, abnormal, social, and industrial psychology.

PSY—B 105 Psychology as a Biological Science (3 cr.) B105 Psychology as a Biological Science (3 cr.) P: consent of instructor. Introduction to basic statistical concepts; descriptive and procedures. Critical review of the psychometric properties of prevailing assessment tools. Review models of interpretation/reporting. Development of proficiencies in administering prominent neuropsychological tests, neuropsychological interviewing, and writing of reports that integrate multidisciplinary data.

PSY—B 292 Readings and Research in Psychology (1-3 cr.) B292 Readings and Research in Psychology (1-3 cr.) P: consent of instructor. Fall, Spring. Independent readings and research on psychology problems. For freshmen and sophomores only.

PSY—B 305 Statistics (3 cr.) B305 Statistics (3 cr.) P: B104 or B105, and 3 credits of mathematics that carry School of Science credit. Equiv. to IU PSY K300, PSY K310, and PU PSY 201. Fall, Spring, Summer.
Research methodology and theory will be emphasized from historical antecedents through current theories.

PSY–B 307 Tests and Measurement (3 cr.) B307 Tests and Measurement (3 cr.) P: Three (3) credit hours of psychology and B305. Equiv. to IU PSY P336 and PU PSY 202. Overview of statistical foundations of psychological measurement (e.g., test development, norms, reliability, validity). Survey of commonly used assessment instruments (e.g., intelligence/aptitude, personality, academic achievement tests) and applications of psychological testing in different settings (e.g., clinical, industrial/organizational, school, forensic/legal settings). Recommended for students considering graduate training in clinical, industrial/organizational, school, or related areas of psychology.

PSY–B 310 Life Span Development (3 cr.) B310 Life Span Development (3 cr.) Fall, Spring, Summer. Equiv. to PU PSY 230. Emphasizes the life span perspective of physical and motor, intellectual and cognitive, language, social and personality, and sexual development. Commonalities across the life span, as well as differences among the various segments of the life span, are examined. Theory, research, and practical applications are stressed equally.

PSY–B 311 Introductory Laboratory in Psychology (3 cr.) B311 Introductory Laboratory in Psychology (3 cr.) P: B105 and B305 or consent of instructor. Equiv. to IU PSY P211, and PU PSY 203. Fall, Spring. Introductory laboratory in experimental methods and statistical treatment of data in several areas of psychology; introduction to experimental report writing.

PSY–B 320 Behavioral Neuroscience (3 cr.) B320 Behavioral Neuroscience (3 cr.) P: B105. Equiv. to IU PSY P326 and PU PSY 220. Review of necessary background in neurophysiology and neuroanatomy followed by the relationship of physiology to sensory processes, motivation, and learning. Emphasis on research with animals.

PSY–B 322 Introduction to Clinical Rehabilitation Psychology (3 cr.) B322 Introduction to Clinical Rehabilitation Psychology (3 cr.) P: 3 credit hours in psychology. This course surveys various aspects of the practice of clinical rehabilitation psychology from a scientist-practitioner perspective. Aspects of the historical framework of clinical psychology will be discussed. In addition, various aspects of the present state of clinical psychology will be covered in addition to directions for the future. Specific topics to be addressed include health psychology, new trends in diagnosis and assessment, changing health care patterns and the impact of managed care, and specific areas of rehabilitation and case management.

PSY–B 340 Cognition (3 cr.) B340 Cognition (3 cr.) P: B105 or consent of instructor. Equiv. to IU PSY P335 and PU PSY 200. A survey of information processing theories from historical antecedents through current theories. Research methodology and theory will be emphasized throughout the discussion of issues such as perception, attention, memory, reasoning, and problem solving.

PSY–B 344 Learning (3 cr.) B344 Learning (3 cr.) P: B105. Equiv. to IU PSY P325 and PU PSY 314. History, theory, and research involving human and animal learning and cognitive processes.

PSY–B 354 Adult Development and Aging (3 cr.) B354 Adult Development and Aging (3 cr.) P: B310 or consent of instructor. Equiv. to PU PSY 367. Examines changes that occur with age in the following areas: intelligence, memory, personality, sexuality, health, living environments, economics, developmental disorders, and treatment for developmental disorders.

PSY–B 356 Motivation (3 cr.) B356 Motivation (3 cr.) P: Three (3) credit hours of psychology. Equiv. to IU PSY P327 and PU PSY 333. Study of motivational processes in human and animal behavior, how needs and incentives influence behavior, and how motives change and develop.

PSY–N 358 Introduction to Industrial/Organizational Psychology (3 cr.) B358 Introduction to Industrial/Organizational Psychology (3 cr.) P: Three (3) credit hours of psychology or consent of instructor. Equiv. to IU PSY P323 and PU PSY 372. This course surveys various aspects of behavior in work situations using the scientist-practitioner perspective. Traditional areas covered from personnel psychology include selection, training, and performance appraisal; areas surveyed from organizational psychology include leadership, motivation, and job satisfaction.

PSY–B 360 Child and Adolescent Psychology (3 cr.) B360 Child and Adolescent Psychology (3 cr.) P: Three (3) credit hours of psychology. Equiv. to IU PSY P316 and PU PSY 235. Development of behavior in infancy, childhood, and adolescence, including sensory and motor development and processes such as learning, motivation, and socialization.

PSY–B 362 Practicum in Child Psychology (3 cr.) B362 Practicum in Child Psychology (3 cr.) P: consent of instructor. Experience working with children in field setting. May be repeated once.

PSY–B 365 Stress and Health (3 cr.) B365 Stress and Health (3 cr.) This course will familiarize students with the study of physical health within the field of psychology. Topics include the relationship between stress and health, health promotion, health behaviors, chronic illness, and the patient-physician relationship. Research methods in health psychology as well as major theories underlying the field will be examined and evaluated. Psychological variables related to physical health will be examined within the framework of these theories. Practical application of constructs will be emphasized through activities and writing assignments.

PSY–B 366 Concepts and Applications in Organizational Psychology (3 cr.) B366 Concepts and Applications in Organizational Psychology (3 cr.) P: B358 or consent of instructor. Some organizational psychology topics introduced in the I/O psychology survey course are covered in more depth. Advanced information is presented for each topic, and students have the opportunity for several different hands-on applications, including case projects and computer exercises. Example topics are
organizational culture, employee attitudes, motivation, and leadership.

PSY–B 368 Concepts and Applications in Personnel Psychology (3 cr.) B368 Concepts and Applications in Personnel Psychology (3 cr.) P: B358 or consent of instructor. Some personnel psychology topics introduced in the I/O psychology survey course are covered in more depth. Advanced information is presented for each topic, and students have the opportunity for several different hands-on applications, including case projects and computer exercises. Example topics are job analysis, selection, performance appraisal, and training.

PSY–B 370 Social Psychology (3 cr.) B370 Social Psychology (3 cr.) P: Three (3) credit hours of psychology. Equiv. to IU PSY P320 and PU PSY 240. Fall, Spring, Summer. Study of the individual in social situations including socialization, social perception, social motivation, attitudes, social roles, and small group behavior.

PSY–B 374 Group Dynamics Theory and Research (3 cr.) B374 Group Dynamics Theory and Research (3 cr.) P: B370. An intensive survey of research and theory on the behavior of small groups and the research methods by which groups are studied.

PSY–B 375 Psychology and Law (3 cr.) B375 Psychology and Law (3 cr.) This course offers an overview of the U.S. legal system from a behavioral science perspective. Topics include: careers in psychology and law; theories of crime; police investigations and interrogations; eyewitness accuracy; jury decision-making; sentencing; assessing legal competence; insanity and dangerousness; and the psychology of victims.

PSY–B 376 The Psychology of Women (3 cr.) B376 The Psychology of Women (3 cr.) P: Three (3) credit hours of psychology. Equiv. to IU PSY P460 and PU PSY 239. A survey of topics in psychology as related to the biological, social, and psychological development of women in modern society.

PSY–B 380 Abnormal Psychology (3 cr.) B380 Abnormal Psychology (3 cr.) Equiv. to IU PSY P324 and PU PSY 350. Fall, Spring, Summer. Various forms of mental disorders with emphasis on cause, development, treatment, prevention, and interpretation.

PSY–B 382 Practicum in Community Psychology (3 cr.) B382 Practicum in Community Psychology (3 cr.) P or C: B370 or B380 and consent of instructor. Experience working with individuals who may have a wide range of psychological problems. Focus is upon both the individual and helping agency as factors in the community.

PSY–B 386 Introduction to Counseling (3 cr.) B386 Introduction to Counseling (3 cr.) P: B104, B310, and B380. This course will help students acquire a repertoire of basic counseling interview skills and strategies and expose students to specific helping techniques. This will be an activity-based course and students will enhance the general-education goals of listening and problem solving.

PSY–B 394 Drugs and Behavior (3 cr.) B394 Drugs and Behavior (3 cr.) P: B105. Equiv. to PU PSY 428. An introduction to psychopharmacology, the study of drugs that affect behavior, cognitive functioning, and emotions, with an emphasis on drugs of abuse. The course will explore how drugs alter brain function and the consequent effects, as well as the long-term consequences of drug exposure.

PSY–B 396 Alcohol, Alcoholism, and Drug Abuse (3 cr.) B396 Alcohol, Alcoholism, and Drug Abuse (3 cr.) Provides introduction to the use, misuse, and dependent use of alcohol and other mood-altering drugs. Topics include basic principles of drug action, the behavioral and pharmacological effects of drugs, and the factors that influence use, abuse, and addiction. Addiction assessment, treatment, and treatment outcome also will be covered.

PSY–B 398 Brain Mechanisms of Behavior (3 cr.) B398 Brain Mechanisms of Behavior (3 cr.) P: B320. Spring. An advanced topical survey of the neurobiological basis of behavior, focusing on the neural substrates and the cellular and neurochemical processes underlying emotions, motivation and goal-directed behavior, hedonic experience, learning, and cognitive function. Integrates experimental research across different levels of analysis (genetic, molecular, cellular, neural systems).

PSY–B 420 Humanistic Psychology (3 cr.) B420 Humanistic Psychology (3 cr.) A comprehensive survey of the field of humanistic psychology. Explores human experience as a focal point in the study of psychology. Use of didactic and experiential teaching methods.

PSY–B 422 Professional Practice (1-3 cr.) B422 Professional Practice (1-3 cr.) P: consent of instructor. Can include a professional internship in the community, peer advising in the psychology advising office, or teaching internship in the department. Faculty mentor must approve and oversee activity. Academic work will be required to earn credit.

PSY–B 424 Theories of Personality (3 cr.) B424 Theories of Personality (3 cr.) P: Three (3) credit hours of psychology. Equiv. to IU PSY P319 and PU PSY 420. Methods and results of the scientific study of personality, including the development, structure, and functioning of the normal personality.

PSY–B 425 Capstone Laboratory in Personality (3 cr.) B425 Capstone Laboratory in Personality (3 cr.) P: B305, B311 and B424. Demonstrations and experiments in personality research.

PSY–B 431 Capstone Laboratory in Cognition (3 cr.) B431 Capstone Laboratory in Cognition (3 cr.) P: B311, B305, and B340. Equiv. to IU PSY P435. Experiments and demonstrations in cognitive psychology.

PSY–B 452 Seminar in Psychology (1-3 cr.) B452 Seminar in Psychology (1-3 cr.) P: B305 and B311. Topics in psychology and interdisciplinary applications. May be repeated, provided different topics are studied, for a maximum of 6 credit hours.

PSY–B 454 Capstone Seminar in Psychology (3 cr.) B454 Capstone Seminar in Psychology (3 cr.) P: B305 and B311 or consent of instructor. Topics in psychology and interdisciplinary applications, which have been approved to fulfill the capstone course requirement.

PSY–B 460 Behavior Management (3 cr.) B460 Behavior Management (3 cr.) P: consent of instructor. Equiv. to IU PSY P430 and PU PSY 380. Conducted as a seminar and a practicum for psychology majors...
and teachers in the principles and methods of behavior management.

PSY–B 461 Capstone Laboratory in Developmental Psychology (3 cr.) B461 Capstone Laboratory in Developmental Psychology (3 cr.) P: B311, B305, and B310 or B360. Equiv. to IU PSY P429. Principal research methods in developmental psychology and their application to selected problems.

PSY–B 462 Capstone Practicum in Industrial/Organizational Psychology (3 cr.) B462 Capstone Practicum in Industrial/Organizational Psychology (3 cr.) P: B366 or B368 or equivalent and consent of instructor. Provides students with work experience, one day per week, in local organizations. Practice will be obtained in using the applied skills of industrial psychology to solve actual organizational problems.

PSY–B 471 Capstone Laboratory in Social Psychology (3 cr.) B471 Capstone Laboratory in Social Psychology (3 cr.) P: B311 and B305. P or C: B370. Equiv. to IU PSY P421. Observational, correlational, and experimental studies in social psychology.

PSY–B 472 Practicum in Group Dynamics (3 cr.) B472 Practicum in Group Dynamics (3 cr.) P: Six (6) credit hours of psychology and consent of instructor. Equiv. to IU PSY P321. Application in the field of group dynamics through experience as a participant in group sensitivity training.

PSY–B 481 Capstone Laboratory in Clinical Rehabilitation Psychology (3 cr.) B481 Capstone Laboratory in Clinical Rehabilitation Psychology (3 cr.) P: B305, B311, and B360. This course will familiarize students with research methods within the field of clinical psychology. As a capstone course, it requires students to use the information and skills learned throughout their undergraduate studies, especially in the courses listed as prerequisites. As a laboratory, it requires students to use their knowledge and skills to conduct an independent research study to further develop and consolidate their understanding of psychology as a science.

PSY–B 482 Capstone Practicum in Clinical Rehabilitation Psychology (3 cr.) B482 Capstone Practicum in Clinical Rehabilitation Psychology (3 cr.) P: B386 and consent of instructor. Students are placed in a clinical/community setting and gain applied practicum experience working with individuals who have psychological, medical, and/or physical health problems. Relevant multicultural issues will be addressed.

PSY–B 492 Readings and Research in Psychology (1-3 cr.) B492 Readings and Research in Psychology (1-3 cr.) P: consent of instructor. Equiv. to IU PSY P495 and PU PSY 390 and 391. Fall, Spring, Summer. Independent readings and research on psychological problems.

PSY–B 499 Capstone Honors Research (ARR. cr.) B499 Capstone Honors Research (cr. arr.) P: consent of instructor. Equiv. to IU PSY P499. Fall, Spring, Summer. Independent readings and research resulting in a research paper.

Statistics

Advanced Undergraduate and Graduate

STAT 51000 Statistical Methods I (3 cr.)

- P: MATH 166. Spring. Descriptive statistics; elementary probability; random variables and their distributions; expectation; normal, binomial, Poisson, and hypergeometric distributions; sampling distributions; estimation and testing of hypotheses; one-way analysis of variance; and correlation and regression.

STAT 51200 Applied Regression Analysis (3 cr.)

STAT 51300 Statistical Quality Control (3 cr.)

- P: 511. Control charts and acceptance sampling, standard acceptance plans, continuous sampling plans, sequential analysis, and response surface analysis. Use of existing statistical computing packages.

STAT 51400 Designs of Experiments (3 cr.)

- P: 512. Spring. Fundamentals, completely randomized design, and randomized complete blocks. Latin squares, multiclassification, factorial, nested factorial, incom-plete blocks, fractional replications, confounding, general mixed factorial, split-plot, and optimum design. Use of existing statistical computing packages.

STAT 51500 Statistical Consulting Problems (1-3 cr.)

- P: consent of advisor. Consultation on real-world problems involving statistical analysis under the guidance of a faculty member. A detailed written report and an oral presentation are required.

STAT 51600 Basic Probability and Applications (3 cr.)

- P: MATH 261 or equivalent. Fall. A first course in probability intended to serve as a foundation for statistics and other applications. Intuitive background; sample spaces and random variables; joint, conditional, and marginal distributions; special distributions of statistical importance; moments and moment generating functions; statement and application of limit theorems; and introduction to Markov chains.

STAT 51700 Statistical Inference (3 cr.)

- P: 511 or 516. Spring. A basic course in statistical theory covering standard statistical methods and their applications. Includes unbiased, maximum likelihood, and moment estimation; confidence intervals and regions; testing hypotheses for standard distributions and contingency tables; and introduction to nonparametric tests and linear regression.

STAT 51900 Probability Theory (3 cr.)

- P: MATH 261 or equivalent. Fall. Sample spaces and axioms of probability, conditional probability, independence, random variables, distribution functions, moment generating and characteristics functions, special discrete and continuous distributionsunivariate and multivariate cases, normal multivariate distributions, distribution of functions of random variables, modes of
convergence and limit theorems, including laws of large numbers and central limit theorem.

STAT 52000 Time Series and Applications (3 cr.)
P: 519. A first course in stationary time series with applications in engineering, economics, and physical sciences. Stationarity, autocovariance function and spectrum; integral representation of a stationary time series and interpretation; linear filtering; transfer function models; estimation of spectrum; and multivariate time series. Use of existing statistical computing packages.

STAT 52100 Statistical Computing (3 cr.)
C: 512 or equivalent. A broad range of topics involving the use of computers in statistical methods. Collection and organization of data for statistical analysis; transferring data between statistical applications and computing platforms; techniques in exploratory data analysis; and comparison of statistical packages.

STAT 52200 Sampling and Survey Techniques (3 cr.)
P: 512 or equivalent. Survey designs; simple random, stratified, and systematic samples; systems of sampling; methods of estimation; ratio and regression estimates; and costs. Other related topics as time permits.

STAT 52300 Categorical Data Analysis (3 cr.)
P: 528 or equivalent, or consent of instructor. Models generating binary and categorical response data, two-way classification tables, measures of association and agreement, goodness-of-fit tests, testing independence, large sample properties. General linear models, logistic regression, and probit and extreme value models. Loglinear models in two and higher dimensions; maximum likelihood estimation, testing goodness-of-fit, partitioning chi-square, and models for ordinal data. Model building, selection, and diagnostics. Other related topics as time permits. Computer applications using existing statistical software.

STAT 52400 Applied Multivariate Analysis (3 cr.)
P: 528 or equivalent, or consent of instructor. Fall. Extension of univariate tests in normal populations to the multivariate case, equality of covariance matrices, multivariate analysis of variance, discriminant analysis and misclassification errors, canonical correlation, principal components, and factor analysis. Strong emphasis on the use of existing computer programs.

STAT 52500 Intermediate Statistical Methodology (3 cr.)
C: 528 or equivalent, or consent of instructor. Generalized linear models, likelihood methods for data analysis, and diagnostic methods for assessing model assumptions. Methods covered include multiple regression, analysis of variance for completely randomized designs, binary and categorical response models, and hierarchical loglinear models for contingency tables.

STAT 52800 Mathematical Statistics (3 cr.)
P: 519 or equivalent. Spring. Sufficiency and completeness, the exponential family of distributions, theory of point estimation, Cramer-Rao inequality, Rao-Blackwell Theorem with applications, maximum likelihood estimation, asymptotic distributions of ML estimators, hypothesis testing, Neyman-Pearson Lemma, UMP tests, generalized likelihood ratio test, asymptotic distribution of the GLR test, and sequential probability ratio test.

STAT 52900 Applied Decision Theory and Bayesian Analysis (3 cr.)
C: 528 or equivalent. Foundation of statistical analysis, Bayesian and decision theoretic formulation of problems; construction of utility functions and quantifications of prior information; methods of Bayesian decision and inference, with applications; empirical Bayes; combination of evidence; and game theory and minimax rules, Bayesian design, and sequential analysis. Comparison of statistical paradigms.

MATH 53200 Elements of Stochastic Processes (3 cr.)
P: 519 or equivalent. A basic course in stochastic models including discrete and continuous time processes, Markov chains, and Brownian motion. Introduction to topics such as Gaussian processes, queues and renewal processes, and Poisson processes. Application to economic models, epidemic models, and reliability problems.

STAT 53300 Nonparametric Statistics (3 cr.)

STAT 53600 Introduction to Survival Analysis (3 cr.)
P: 517 or equivalent. Deals with the modern statistical methods for analyzing time-to-event data. Background theory is provided, but the emphasis is on the applications and the interpretations of results. Provides coverage of survivorship functions and censoring patterns; parametric models and likelihood methods, special life-time distributions; nonparametric inference, life tables, estimation of cumulative hazard functions, and the Kaplan-Meier estimator; one- and two-sample nonparametric tests for censored data; and semiparametric proportional hazards regression (Cox Regression), parameters' estimation, stratification, model fitting strategies, and model interpretations. Heavy use of statistical software such as Splus and SAS.

STAT 59800 Topics in Statistical Methods (1-3 cr.)
P: consent of instructor. Directed study and reports for students who wish to undertake individual reading and study on approved topics.

STAT 61900 Probability (pending approval) (3 cr.)
P: STAT 519, 528. Theory Measure theory based course in probability. Topics include Lebesgue measure, measurable functions and integration. Radon-Nikodym Theorem, product measures and Fubini's Theorem, measures on infinite product spaces, basic concepts of probability theory, conditional probability and expectation, regular conditional probability, strong law of large numbers, martingale theory, martingale convergence theorems, uniform integrability, optional sampling theorems, Kolmogorov's Three series Theorem, weak convergence of distribution functions, method
of characteristic functions, the fundamental weak compactness theorems, convergence to a normal distribution, Lindeberg's Theorem, infinitely divisible distributions and their subclasses.

STAT 62800 Advanced Statistical Inference (pending approval) (3 cr.)
P: STAT 519, 528, C: STAT 619. Real analysis for inference, statistics and subfields, conditional expectations and probability distributions, UMP tests with applications to normal distributions and confidence sets, invariance, asymptotic theory of estimation and likelihood based inference, U-statistics, Edgeworth expansions, saddle point method.

STAT 63800 Stochastic Processes I (pending approval) (3 cr.)
P: STAT 619. Advanced topics in probability theory which may include stationary processes, independent increment processes, Gaussian processes; martingales, Markov processes, ergodic theory.

STAT 63900 Stochastic Processes II (pending approval) (3 cr.)
P: STAT 638. This is the continuation of STAT 638. We will concentrate on specific chapters from the textbook, including Ch VI-IX (Local Times, Generators, Girsanov's theorem, Stochastic Differential Equations). Some material from another textbook (Karatzas and Shreve, Brownian Motion and Stochastic Calculus), and the instructor's own work, may also be used, especially to cover Feynman-Kac formulas and the connection to PDEs and Stochastic PDEs. New topics not treatable using martingales will also be investigated, include stochastic integration with respect to Fractional Brownian Motion and other, more irregular Gaussian processes; anticipative stochastic calculus; Gaussian and non-Gaussian regularity theory.

STAT 69500 Seminar in Mathematical Statistics (pending approval) (1-3 cr.)
P: Consent of advisor. Individual Study that meets 3 times per week for 50 minutes per meeting for 16 weeks.

STAT 69800 Research M.S. Thesis (6 cr.)

STAT 69900 Research Ph.D. Thesis (pending approval) (1-18 cr.)

Undergraduate

STAT 11300 Statistics and Society (3 cr.)
Fall, spring. Intended to familiarize the student with basic statistical concepts and some of their applications in public and health policies, as well as in social and behavioral sciences. No mathematics beyond simple algebra is needed, but quantitative skills are strengthened by constant use. Involves much reading, writing, and critical thinking through discussions on such topics as data ethics, public opinion polls and the political process, the question of causation the role of government statistics, and dealing with chance in everyday life. Applications include public opinion polls, medical experiments, smoking and health, the consumer price index, state lotteries, and the like. STAT 113 can be used for general education or as preparation for later methodology courses.

STAT 19000 Topics in Statistics for Undergraduates (1-5 cr.)
Supervised reading course or special topics course at the freshman level. Prerequisites and course material vary with the topic.

STAT 29000 Topics in Statistics for Undergraduates (1-5 cr.)
Supervised reading course or special topics course at the sophomore level. Prerequisites and course material vary with the topic.

STAT 30100 Elementary Statistical Methods I (3 cr.)
P: MATH 110 or 111 (with a minimum grade of C-) or equivalent. Not open to students in the Department of Mathematical Sciences. Fall, spring, summer. Introduction to statistical methods with applications to diverse fields. Emphasis on understanding and interpreting standard techniques. Data analysis for one and several variables, design of samples and experiments, basic probability, sampling distributions, confidence intervals and significance tests for means and proportions, and correlation and regression. Software is used throughout.

STAT 30200 Elementary Statistical Methods II (3 cr.)
P: 301 or equivalent. Continuation of 301. Multiple regression and analysis of variance, with emphasis on statistical inference and applications to various fields.

STAT 31100 Introductory Probability (3 cr.)
P: MATH 261 or equivalent. Not open to students with credit in 416. Fall. Fundamental axioms and laws of probability; finite sample spaces and combinatorial probability; conditional probability; Bayes theorem; independence; discrete and continuous random variables; univariate and bivariate distributions; binomial, negative binomial, Poisson, normal, and gamma probability models; mathematical expectation; and moments and moment generating functions.

STAT 35000 Introduction to Statistics (3 cr.)
P: MATH 165 or equivalent. Fall, spring. A data-oriented introduction to the fundamental concepts and methods of applied statistics. The course is intended primarily for majors in the mathematical sciences (mathematics, actuarial sciences, mathematics education). The objective is to acquaint the students with the essential ideas and methods of statistical analysis for data in simple settings. It covers material similar to that of 511 but with emphasis on more data-analytic material. Includes a weekly computing laboratory using Minitab.

STAT 37100 Prep for Actuarial Exam I (2 cr.)
This course is intended to help actuarial students prepare for the Actuarial Exam P.

STAT 39000 Topics in Statistics for Undergraduates (1-5 cr.)
Supervised reading course or special topics course at the junior level. Prerequisites and course material vary with the topic.

STAT 41600 Probability (3 cr.)
P: MATH 261 or equivalent. Not open to students with credit in 311. Fall. An introduction to mathematical probability suitable as preparation for actuarial science, statistical theory, and mathematical modeling. General probability rules, conditional probability, Bayes theorem, discrete and continuous random variables, moments and moment generating functions, continuous distributions and their properties, law of large numbers, and central limit theorem.

STAT 41700 Statistical Theory (3 cr.)

STAT 47200 Actuarial Models I (3 cr.)
P: 417 or equivalent. Fall. Mathematical foundations of actuarial science emphasizing probability models for life contingencies as the basis for analyzing life insurance and life annuities and determining premiums. This course, together with its sequel, 473, provides most of the background for Course 3 of the Society of Actuaries and the Casualty Actuarial Society.

STAT 47300 Actuarial Models II (3 cr.)
P: 472. Spring. Continuation of 472. Together, these courses cover contingent payment models, survival models, frequency and severity models, compound distribution models, simulation models, stochastic process models, and ruin models.

STAT 49000 Topics in Statistics for Undergraduates (1-5 cr.)
Supervised reading and reports in various fields.

Undergraduate Programs

Baccalaureate Degrees

School of Science requirements are the minimal requirements in various areas, and individual departments may require more, as stated in their degree descriptions. Students should consult with departmental advisors in planning their courses of study.

Please refer to the Departments & Centers section of this Bulletin for specific degree requirements.

General Requirements

1. A minimum of 124 credit hours (a minimum of 122 for environmental science and geology) must be completed. Approval must be obtained from the School of Science to use as credit toward graduation any course that was completed 10 or more years previously.

2. A minimum grade point average of 2.0 is required.

3. A minimum of 24 credit hours must be taken in a major subject (see departmental requirements) with a minimum grade point average of 2.0. No grade below C- is acceptable in the major subject.

4. At least four courses totaling a minimum of 12 credit hours in the major subject must be completed at IUPUI (see departmental requirements).

5. Residence at IUPUI for at least two semesters and completion, while at IUPUI, of at least 32 credit hours of work in courses at the 300 level or higher are required.

6. With the approval of the Executive Director of Academic Affairs or the Associate Dean for Academic Affairs, students who have had at least four semesters of resident study may complete up to 15 credit hours of the senior year at another approved college or university.

7. Courses taken on the Pass/Fail option may be applied only as general electives and not toward degree area requirements of the school or department. Courses taken on the Pass/Fail option may apply to the 32 credit hours residency requirement listed in item 5 if the course is at the 300-level or higher.

8. No more than 64 credit hours earned in accredited junior colleges can be applied toward a degree.

9. Students may enroll in independent study (correspondence) courses for general electives up to a maximum of 12 credit hours with permission of the Executive Director of Academic Affairs or the Associate Dean for Academic Affairs. Independent study (correspondence) courses may not apply to the 32 credit hours residency requirement listed in item 5.

10. With permission of the appropriate department, credit may be earned through special credit examination. Credits earned by special credit examination may be used toward the total credit hours required and to satisfy area requirements for a degree.

11. The following courses do not count for any credit toward any degree program in the School of Science: AGR 10100; BIOL-N120; BUS-K201, BUS-K204; CSC-N100-level courses; CIT 10600; CPT 10600; all remedial and developmental courses; EDUC-U205, EDUC-W200, EDUC-W201, EDUC-X100, EDUC-X150, EDUC-X151, EDUC-X152; ENG-G010, ENG-G011, ENG-Z012, ENG-W001, ENG-W031, ENG-W130; MATH-M010, MATH 0100, MATH-M001, MATH 00200, MATH 11000, MATH 11000, MATH 12300, MATH 13000, MATH 13200, MATH 13600; PHYS 01000; UCOL-U112, UCOL-U210.

NOTE: This is not a complete list. The School and department reserve the right to exclude course credit when it is deemed as overlapping with other earned credit or it is determined to be remedial in nature.
• Unless approved as part of the major, note that all courses taken outside the Schools of Science and Liberal Arts must receive approval from the School of Science Academic Dean’s Office. Consult with your major department or the School of Science Academic Dean’s Office for additional course restrictions.

• Note that CHEM-C100 may count for general elective credit only if the student has not already established credit in CHEM-C101 or CHEM-C105/CHEM-C106, or equivalent courses. Otherwise, CHEM-C100 does not count for credit in any given degree program.

• Note that if credit has been established for both GEOL-G132 and GEOL-G107, then only GEOL-G107 may apply to Area IIIC. In this case, GEOL-G132 may count as a general elective provided that credit was established in GEOL-G132 preceding GEOL-G107.

12 Courses taken outside of the Schools of Science and Liberal Arts must receive departmental approval. No more than 6 credit hours of studio, clinical, athletic, or performing arts course work will be approved. Consult a school or departmental advisor.

12 An application for a degree or certificate and a CAND 99100 authorization form must be filed with the Director of Student Records and Retention in the School of Science, Science Building, LD 222. Applications and CAND 99100 forms are due by February 1 for August graduation; May 1 for December graduation; and October 1 for May graduation.

• Students should also register for the appropriate section of CAND 99100 (0 credit hours) during their final semester before graduation. Degree candidates for December, May, or August graduation of a particular academic year may participate in the May Commencement.

• In general, credit is not allowed for both of two overlapping courses. Examples of course overlaps include (NOTE: This is not a complete list):
 - BIOL-N100 and BIOL-K101/BIOL-K103
 - BIOL-N212/BIOL-N213 and BIOL-N217
 - BIOL-N214/BIOL-N215 and BIOL-N261
 - CHEM-C101/CHEM-121 and CHEM-C105 and/or CHEM-C106
 - CHEM-C102 and CHEM-C341/CHEM-C343
 - CHEM-C110 and CHEM-C341
 - CHEM-C110/CHEM-C115 and CHEM-C341/CHEM-C343
 - CHEM-C360 and CHEM-C361
 - CHEM-C325 and CHEM-C410/CHEM-C411
 - GEOL-G110 and GEOG-G107
 - GEOL-G185 and GEOG-G185
 - MATH-M119 and MATH 22100 or MATH 23100 or MATH 16300 or MATH 16500
 - MATH 15100 or 15900 and MATH 15300/15400
 - MATH 15100 and MATH 15900
 - MATH 22100/MATH 22200 and MATH 23100/MATH 23200
 - MATH 22100/MATH 22200 and MATH 16300/MATH 16400 or MATH 16500/MATH 16600
 - MATH 23100/MATH 23200 and MATH 16300/MATH 16400 or MATH 16500/MATH 16600
 - MATH 16300 and MATH 16500
 - MATH 16400 and MATH 16600
 - PHYS-P201/PHYS-P202 or PHYS 21800/PHYS 21900 and PHYS 15200/PHYS 25100
 - PSY-B320 and BIOL-L391 Addictions (IU East)
 - SCI-I120 and UCOL-U110
 - STAT 30100 and PSY-B305

• In addition, any course that is retaken is considered an overlap. Consult with your academic advisor regarding other overlapping courses.

14 See statements about required First-Year Experience Course and Senior Capstone Experience in the description of the Bachelor of Arts degree and the Bachelor of Science degree programs.

Area Requirements

Area Requirements for Baccalaureate Degrees

The faculty of the School of Science has adopted the following degree requirements for the Bachelor of Arts and Bachelor of Science degrees. Students may follow the School of Science and departmental requirements that are in effect when they enter the School of Science, or they may choose new requirements that become effective after that date.

School of Science requirements are the minimal requirements in various areas, and individual departments may require more, as stated in their degree descriptions. Students should consult with departmental advisors in planning their courses of study.

• Bachelor of Arts Degree and Bachelor of Science Degree Requirements

Bachelor of Arts Degree and Bachelor of Science Degree Requirements

The requirements for these bachelor’s degree programs include the common general education core approved by the faculties of both the School of Liberal Arts and the School of Science. This general education core, together with the major, is a curriculum based on the IUPUI Principles of Undergraduate Learning (see the front part of this bulletin for a description of these principles).

First-Year Experience Course

Each beginning freshman and transfer student (with less than 18 credit hours) in both the Bachelor of Arts and Bachelor of Science programs in the School of Science is required to take either SCI-I120 Windows on Science
Bachelor of Arts Degree and Bachelor of Science Degree Requirements

May 26, 2010

(1 cr.) or an equivalent freshman experience course that may be offered by a department in which the student is a major. Beginning psychology majors are required to take PSY-B103 Orientation to a Major in Psychology (1 cr.).

Area I
English Composition and Communication Skills

Both Bachelor of Arts and Bachelor of Science students are required to take two courses in English composition worth at least 3 credit hours each and COMM-R110 Fundamentals of Speech Communication (3 cr.). The English composition requirement is partially satisfied by completing ENG-W131 (or ENG-W140). The second composition course must have ENG-W131 (or ENG-W140) as a prerequisite. An appropriate course in technical or research writing may be used to complete the second composition course requirement. Consult departmental guidelines. A grade of C or higher must be obtained in both composition courses.

Area II
Foreign Language

1. A first-year proficiency in a foreign language is required for the Bachelor of Arts degree program. Note that American Sign Language may be used to satisfy this requirement. This requirement may be satisfied in one of the following ways:
 - by completing first-year courses (8-10 credit hours) in a single language with passing grades;
 - by completing a second-year or third-year course with a grade of C or higher;
 - by taking a placement test and placing into the 200 level or higher. See the School of Liberal Arts section of this bulletin for items related to the placement test, courses numbered 117, nonnative speakers, and credit for lower division language courses.

2. Check the department section of the bulletin for any reference to a language proficiency requirement for a Bachelor of Science degree program.

Area III
IIIA Humanities, Social Sciences, and Comparative World Cultures

Four courses totaling 12 credit hours are required. The courses are to cover each of four areas:

1. HIST-H114 History of Western Civilization II (3 cr.) or "HIST-H109 Perspectives on the World: 1800 to Present (3 cr.) ("NOTE: Environmental Science, Geology, and Interdisciplinary Studies majors must take HIST-H114. HIST-H109 will not meet this requirement.)
2. One course in humanities from List H
3. One course in social sciences from List S
4. One course in comparative world cultures from List C

Courses taken from lists H, S, and C must be outside the student's major.

It is recommended that the student see an academic advisor for updated lists.

Note that some courses may appear on more than one list. A cross-listed course may apply to only one of the required areas specified by the lists.

List H: Humanities

- Afro-American Studies (AFRO)
 - AFRO-A150 Survey of the Culture of Black Americans (3 cr.)
- American Studies (AMST)
 - *AMST-A103 Topics in American Studies (3 cr.)
 - *(NOTE: Not all topics are acceptable. Please confirm with the School of Science Dean's Office for approval.)
- Art History (HER)
 - HER-H100 Art Appreciation (3 cr.)
 - HER-H101 History of Art I (3 cr.)
 - HER-H102 History of Art II (3 cr.)
- Classical Studies (CLAS)
 - CLAS-C205 Classical Mythology (3 cr.)
- Communication Studies (COMM)
 - COMM-T130 Introduction to Theatre (3 cr.)
- English (ENG)
 - ENG-L105 Appreciation of Literature (3 cr.)
 - ENG-L115 Literature for Today (3 cr.)
- Film Studies (FILM)
 - FILM-C292 Introduction to Film (3 cr.)
- Folklore (FOLK)
 - FOLK-F101 Introduction to Folklore (3 cr.)
- Music (MUS)
 - MUS-M174 Music for the Listener (3 cr.)
- Philosophy (PHIL)
 - PHIL-P110 Introduction to Philosophy (3 cr.)
 - PHIL-P120 Ethics (3 cr.)
- Religious Studies (REL)
 - REL-R133 Introduction to Religion (3 cr.)
 - REL-R173 American Religion (3 cr.)
 - REL-R180 Introduction to Christianity (3 cr.)
 - REL-R212 Comparative Religions (3 cr.)
- Women's Studies (WOST)
 - WOST-W105 Introduction to Women's Studies (3 cr.)
- World Languages and Cultures (WLAC)
 - WLAC-F200 Cultural Encounters (3 cr.)

List S: Social Sciences

- Afro-American Studies (AFRO)
 - AFRO-A150 Survey of the Culture of Black Americans (3 cr.)
- Anthropology (ANTH)
May 26, 2010 Bachelor of Arts Degree and Bachelor of Science Degree Requirements 47

• ANTH-A104 Culture and Society (3 cr.)
 (Note: ANTH-A304 may be substituted for ANTH-A104. Students may not receive credit for both.)
• Communication Studies (COMM)
 • COMM-C180 Introduction to Interpersonal Communication (3 cr.)
• Economics (ECON)
 • ECON-E101 Survey of Current Economic Issues and Problems (3 cr.)
 • ECON-E201 Introduction to Microeconomics (3 cr.)
 • ECON-E202 Introduction to Macroeconomics (3 cr.)
• English (ENG)
 • ENG-G104 Language Awareness (3 cr.)
• Folklore (FOLK)
 • FOLK-F101 Introduction to Folklore (3 cr.)
• Geography (GEOG)
 • GEOG-G110 Introduction to Human Geography (3 cr.)
 • GEOG-G130 World Geography (3 cr.)
• History (HIST)
 • HIST-H117 Introduction to Historical Studies (3 cr.)
• Political Science (POLS)
 • POLS-Y101 Principles of Political Science (3 cr.)
 • POLS-Y103 Introduction to American Politics (3 cr.)
 • #POLS-Y213 Introduction to Public Policy (3 cr.)
 • #POLS-Y219 Introduction to International Relations (3 cr.)
 (*Note: POLS-Y213 and SPEA-V170 are equivalent courses. Students may not receive credit for both.)
• Psychology (PSY)
 • PSY-B104 Psychology as a Social Science (3 cr.)
 • PSY-B310 Life Span Development (3 cr.)
• Public and Environmental Affairs, School of (SPEA)
 • SPEA-V170 Introduction to Public Affairs (3 cr.)
 (*Note: POLS-Y213 and SPEA-V170 are equivalent courses. Students may not receive credit for both.)
• Sociology (SOC)
 • SOC-R100 Introduction to Sociology (3 cr.)
 • SOC-R121 Social Problems (3 cr.)
• Women’s Studies (WOST)
 • WOST-W105 Introduction to Women’s Studies (3 cr.)

List C: Comparative World Cultures
• Anthropology (ANTH)
 • ANTH-A104 Culture and Society (3 cr.)
 (*Note: ANTH-A304 may be substituted for ANTH-A104. Students may not receive credit for both.)
• Classical Studies (CLAS)
 • CLAS-C205 Classical Mythology (3 cr.)
• World Languages and Cultures (WLAC)
 • WLAC-F200 Cultural Encounters (3 cr.)
• Geography (GEOG)
 • GEOG-G110 Introduction to Human Geography (3 cr.)
• History (HIST)
 • HIST-H108 Perspectives on the World to 1800 (3 cr.)
• Political Science (POLS)
 • POLS-Y217 Introduction to Comparative Politics (3 cr.)
• Religious Studies (REL)
 • REL-R133 Introduction to Religion (3 cr.)
 • REL-R212 Comparative Religions (3 cr.)

IIIB Junior/Senior Integrator (3 cr.)
The Junior/Senior Integrator requirement is suspended indefinitely as a School-level requirement.
Please refer to the Department section of the Bulletin for additional information as to whether a Junior/ Senior Integrator is still required at the major level or if the Department has replaced it with an additional requirement.

You may also contact your academic advisor with questions regarding this requirement suspension.

IIIC Physical and Biological Sciences
Both Bachelor of Arts and Bachelor of Science students are required to complete at least four science lectures courses totaling a minimum of 12 credit hours outside the major department. At least one of the courses must have a laboratory component.

Courses that do not count in Area IIIC include AST-A130; BIOL-N100, BIOL-N200, CHEM-C100, FIS 20500, GEOL-G130, PHYS 10000, PHYS 14000, PHYS 20000, and all agriculture courses.

NOTE: This is not a complete list. If you have a question about whether a course is applicable or not, please speak with your academic advisor prior to registering to confirm.

Topics or variable credit hour courses (i.e., BIOL-N222) must receive approval from the School of Science Academic Dean’s Office. Consult with your major department or the School of Science Academic Dean’s Office for additional course restrictions.

Courses that do not count for any credit toward any degree program in the School of Science include BIOL-N120 and PHYS 01000.

Except for laboratory courses combined with corresponding lecture courses, 1 credit hour and, in general, 2 credit hour courses do not apply to this area. In addition, students must obtain grades of C- or higher in their Area IIIC courses. However, a single grade of D+ or D will be allowed for one course only. Check with the major department for
additional restrictions or requirements. Courses can be chosen from the following departments:

Note that if credit has been established for both GEOL-G132 and GEOL-G107, then only GEOL-G107 may apply to Area IIIC. In this case, GEOL-G132 may count as a general elective provided that credit was established in GEOL-G132 preceding GEOL-G107.

Note that GEOG-G107 Physical Systems of the Environment (3 cr.)/GEOG-G108 Physical Systems of the Environment: Laboratory (2 cr.) may apply to Area IIIC with approval of the student’s major department. Also, GEOG-G185 Global Environmental Change (3 cr.) is an acceptable substitute for GEOL-G185 Global Environmental Change (3 cr.).

IIID Mathematical Sciences

Bachelor of Arts students must have at least one course of at least 3 credit hours in mathematics and one course of at least 3 credit hours in computer science.

Bachelor of Science students must have at least two courses beyond algebra and trigonometry, totaling 6 credit hours. In addition, one course of at least 3 credit hours in computer science is required. Courses in applied statistics are not acceptable.

MATH-M010, 00100, MATH-M001, 00200, 11000, 11100, 12300, 13000, 13200, 13600; BUS-K201, BUS-K204, CSCI-N100-level courses; CIT 10600 and CPT 10600 do not count for any credit toward any degree in the School of Science. Computer Science CSCI-N241 and CSCI-N299 do not count in this area, but may count as a general elective. Students must obtain grades of C- or higher in their Area IIID courses. However, a single grade of D+ or D will be allowed for one course only. Check with the major department for additional restrictions or requirements. Courses can be chosen from the following departments:

Area IV

Major Department

Consult the listing of the major department for courses required within the major subject as well as courses required by the major department in the other areas.

Capstone Experience Course

Each undergraduate major in the School of Science is to be provided a Capstone Experience (research, independent study/project, practicum, seminar, or field experience). The capstone, required of all majors, is to be an independent, creative effort of the student that is integrative and builds on the student’s previous work in the major. See departmental sections of the bulletin for specific information about capstone courses.

Departments & Centers

- Teaching Certification
- PreProfessional Programs
- Honors Program

Teaching Certification

Becoming a Licensed Teacher

Top quality science and mathematics teachers are in high demand, and the IU School of Education at IUPUI is recognized as a leader in urban education. Students who want to become teachers of middle school and/or high school science or mathematics must take specific programs of study aligned to the standards for teaching these subject areas. Teachers must fully understand the content they teach, the realities of schools, and methods for successfully teaching every child. This requires earning a major or a degree in the School of Science and completing a teacher preparation program in the School of Education.

Mathematics and science majors who want to become teachers need to seek advising from the School of Science as soon as possible so that they take the right courses as they complete their majors. Mathematics majors often find they can complete both their major in mathematics and the Learning to Teach/Teaching to Learn (LTTL) program as part of their bachelor’s degree. Science majors typically complete their bachelor’s degree in science and then enter the Transition to Teaching (T2T) program as post baccalaureate students, earning the first half of their master’s degree in this 12-month teacher education program. The Transition to Teaching program is also an option for mathematics graduates or returning students.

Admission to either the undergraduate (LTTL) or the graduate (T2T) teacher education program is competitive. Students must complete a formal application and have most of the required courses in the major, passing PRAXIS test scores, a clear criminal history check, and at least a 2.5 overall GPA. Specific information about admission to each program is available on the School of Education Web site. education.iupui.edu

Both the Learning to Teach/Teaching to Learn program and the Transition to Teaching program enable students to earn Rules 2002 Indiana Teacher Licenses. The LTTL program consists of 43 credit hours of undergraduate study, sequenced across four semesters including a final semester of student teaching. The T2T program is 18 credit hours (plus program fees) of graduate study done while practice teaching in schools everyday for one school year.

Note: Information about teacher education and licensing may change for many reasons, including legislative mandates and state policies. Students need to check for current information on the School of Education Web site education.iupui.edu and meet with School of Education advisors regularly.

Preprofessional Programs

While some professional programs (dental, pharmacy, veterinary) may not require an undergraduate degree for strong applicants, many do require an undergraduate degree. The preprofessional student is urged to elect a degree program rather than fulfilling the minimum requirements for entry into professional programs. This provides the necessary background if a degree is
required, and serves as a backup plan if the student does not matriculate to a professional program.

Students may choose from a variety of majors while completing preprofessional requirements. Students are encouraged to consult with their major advisor, as well as the School of Science health professions advisor, if enrolled in a School of Science degree program.

Although there are many professional programs from which to choose and we encourage students to apply to multiple programs, our preprofessional advising is aligned with the programs with which we are most closely affiliated—IU in Bloomington, the IUPUI campus in Indianapolis and Purdue University in West Lafayette.

Post-baccalaureate students holding non-science degrees may choose to take prerequisite courses through the School of Science for entry into professional programs. These students should consult with the health professions advisor for help with the admission process and course selection. For additional information, see the School of Science Bulletin, Graduate Programs, Graduate Nondegree Study section.

Most professional programs require not only specific prerequisite courses, a strong GPA, and a profession-specific or general entrance test, but also experience including shadowing in the field, volunteering and leadership activities.

Premedical Program

Students planning to apply to medical school must choose a degree program in addition to taking courses that fulfill the admission requirements for their chosen medical school. While many opt to complete their degrees with science majors, other fields of specialization are acceptable. Freshmen should declare their chosen major and seek advising for their degree requirements from the advisor in their major department. IUPUI also offers health professions advising in the School of Science and the School of Liberal Arts. Premedical students should consult the health professions advisor in the School of Science to plan for the testing and admission process required by dental schools. Refer to the Department of Biology section of this bulletin for the required courses for Indiana University School of Optometry and Purdue University School of Veterinary Medicine.

Graduate students holding non-science degrees who are electing courses in the School of Science to prepare for medical or dental school are also invited to use the health professions advising service for help with the admission process.

Pre-Dentistry Prerequisites for IU Dental School

Minimum requirements include 90 credit hours of coursework. Bachelor's degree strongly recommended. The Dental Admission Test (DAT) is required. Applicants should also show evidence of manual dexterity.

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL-K101 Concepts of Biology I</td>
<td>5 cr.</td>
</tr>
<tr>
<td>BIOL-K103 Concepts of Biology II</td>
<td>5 cr.</td>
</tr>
<tr>
<td>CHEM-C105 / CHEM-C125 Principles of Chemistry I / Lab</td>
<td>3 cr./2 cr.</td>
</tr>
<tr>
<td>CHEM-C106 / CHEM-C126 Principles of Chemistry II / Lab</td>
<td>3 cr./2 cr.</td>
</tr>
<tr>
<td>CHEM-C341 / CHEM-C343 Organic Chemistry I/Lab</td>
<td>3 cr.</td>
</tr>
<tr>
<td>CHEM-C342 Organic Chemistry II</td>
<td>3 cr.</td>
</tr>
<tr>
<td>PHYS-P201 General Physics I</td>
<td>5 cr.</td>
</tr>
<tr>
<td>PHYS-P202 General Physics II</td>
<td>5 cr.</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
</tr>
<tr>
<td>-------------</td>
<td>---</td>
</tr>
<tr>
<td>PHYS-P201</td>
<td>General Physics II</td>
</tr>
<tr>
<td>PHYS-P202</td>
<td>General Physics II</td>
</tr>
<tr>
<td>PSY-B104</td>
<td>Psychology as a Social Science</td>
</tr>
<tr>
<td></td>
<td>or PSY-B105 Psychology as a Biological Science</td>
</tr>
<tr>
<td>ENG-W131</td>
<td>English Composition I</td>
</tr>
</tbody>
</table>

Pre-Veterinary Science Prerequisites for Purdue School of Veterinary Medicine

Bachelor's degree is not required. The Graduate Record Exam (GRE) is required for admission.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL-K101</td>
<td>Concepts of Biology I</td>
<td>5 cr.</td>
</tr>
<tr>
<td>BIOL-K103</td>
<td>Concepts of Biology II</td>
<td>5 cr.</td>
</tr>
<tr>
<td>BIOL-K322</td>
<td>Genetics and Molecular Biology/Lab</td>
<td>3 cr./2 cr.</td>
</tr>
<tr>
<td>BIOL-K356</td>
<td>Microbiology/Lab</td>
<td>4 cr. to 5 cr.</td>
</tr>
<tr>
<td></td>
<td>(or MICR-J210 Microbiology and Immunology)</td>
<td></td>
</tr>
<tr>
<td>BIOL-K483</td>
<td>Biological Chemistry</td>
<td>3 cr.</td>
</tr>
<tr>
<td>CHEM-C105</td>
<td>Principles of Chemistry I/ Lab</td>
<td>3 cr./2 cr.</td>
</tr>
<tr>
<td>CHEM-C106</td>
<td>Principles of Chemistry II/ Lab</td>
<td>3 cr./2 cr.</td>
</tr>
<tr>
<td>CHEM-C341</td>
<td>Organic Chemistry I/ Lab</td>
<td>3 cr./2 cr.</td>
</tr>
<tr>
<td>MATH 23100</td>
<td>Calculus for the Life Sciences I</td>
<td>3 cr. to 4 cr.</td>
</tr>
<tr>
<td></td>
<td>(or MATH 22100 or MATH 16500)</td>
<td></td>
</tr>
<tr>
<td>PHYS-P201</td>
<td>General Physics I</td>
<td>5 cr.</td>
</tr>
<tr>
<td>PHYS-P202</td>
<td>General Physics II</td>
<td>5 cr.</td>
</tr>
<tr>
<td>STAT 30100</td>
<td>Elementary Statistical Methods I</td>
<td>3 cr.</td>
</tr>
<tr>
<td></td>
<td>(or STAT-N501 or SPEAK-300)</td>
<td></td>
</tr>
<tr>
<td>ANSC 22300</td>
<td>Animal Nutrition</td>
<td>3 cr.</td>
</tr>
<tr>
<td>ENG-W131</td>
<td>English Composition I</td>
<td>3 cr.</td>
</tr>
<tr>
<td>COMM-R110</td>
<td>Fundamentals of Speech Communication</td>
<td>3 cr.</td>
</tr>
</tbody>
</table>

Arts and Humanities

9 cr.

Pre-Optometry Prerequisites for IU School of Optometry

Minimum of 90 credit hours of coursework. Bachelor's degree strongly recommended. The Optometry Aptitude Test (OAT) is required.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL-K101</td>
<td>Concepts of Biology I</td>
<td>5 cr.</td>
</tr>
<tr>
<td>BIOL-K103</td>
<td>Concepts of Biology II</td>
<td>5 cr.</td>
</tr>
<tr>
<td>BIOL-K356</td>
<td>Microbiology/Lab</td>
<td>3 cr./2 cr.</td>
</tr>
<tr>
<td></td>
<td>Advanced Biology: BIOL-K322 Genetics and Molecular Biology</td>
<td>3 cr. to 5 cr.</td>
</tr>
<tr>
<td></td>
<td>(or BIOL-K324 Cell Biology)</td>
<td></td>
</tr>
<tr>
<td>BIOL-K483</td>
<td>Biological Chemistry</td>
<td>3 cr.</td>
</tr>
<tr>
<td>CHEM-C105</td>
<td>Principles of Chemistry I/ Lab</td>
<td>3 cr./2 cr.</td>
</tr>
<tr>
<td>CHEM-C106</td>
<td>Principles of Chemistry II/ Lab</td>
<td>3 cr./2 cr.</td>
</tr>
<tr>
<td>CHEM-C341</td>
<td>Organic Chemistry I/ Lab</td>
<td>3 cr./2 cr.</td>
</tr>
<tr>
<td>ENG-W131</td>
<td>English Composition I</td>
<td>3 cr.</td>
</tr>
<tr>
<td>ENG-W132</td>
<td>English Composition II</td>
<td>3 cr.</td>
</tr>
<tr>
<td></td>
<td>(or ENG-W231 Professional Writing Skills)</td>
<td></td>
</tr>
<tr>
<td>MATH 23100</td>
<td>Calculus for the Life Sciences I</td>
<td>3 cr. to 4 cr.</td>
</tr>
<tr>
<td></td>
<td>(or MATH 22100 or MATH 16500 or MATH-M119)</td>
<td></td>
</tr>
<tr>
<td>PHYS-P201</td>
<td>General Physics I</td>
<td>5 cr.</td>
</tr>
<tr>
<td>PHYS-P202</td>
<td>General Physics II</td>
<td>5 cr.</td>
</tr>
<tr>
<td>PSY-B104</td>
<td>Psychology as a Social Science</td>
<td>3 cr.</td>
</tr>
<tr>
<td></td>
<td>(or PSY-B105 Psychology as a Biological Science)</td>
<td></td>
</tr>
<tr>
<td>STAT 30100</td>
<td>Elementary Statistical Methods I</td>
<td>3 cr.</td>
</tr>
<tr>
<td></td>
<td>(or STAT-N501 or PSY-B305 or ECON-E270)</td>
<td></td>
</tr>
</tbody>
</table>

If the student does NOT have a bachelor's degree, additional courses are required:

| Arts and Humanities | 6 cr. |
Preprofessional Programs

Foreign language 6 cr.
(students having completed 2 or more years in high school with C or better are exempt)
Social and Historical Studies 6 cr.
Additional credit hours to reach 90 credit hours

Prepharmacy Program

The prepharmacy program at IUPUI consists of approximately 70-90 credit hours of course work required to apply to pharmacy school. Students declaring prepharmacy upon admission to IUPUI are assigned to the Department of Biology, where prepharmacy advising is available. After completion of the required courses for admission, students apply to the pharmacy school of their choice. Refer to the Department of Biology section of this bulletin for required courses to apply to the pharmacy program at the Purdue School of Pharmacy and Pharmacal Sciences.

Pre-Pharmacy Prerequisites for Purdue School of Pharmacy and Pharmacal Sciences

A bachelors' degree is not required. The Pharmacy College Admission Test (PCAT) is not required for admission to Purdue’s program. Those entering the professional program beginning Fall 2010 will have additional course requirements to fulfill. Interested students should contact Purdue University School of Pharmacy and Pharmacal Sciences for more information.

BIOL-K101 Concepts of Biology I 5 cr.
BIOL-K103 Concepts of Biology II 5 cr.
BIOL-K356 / BIOL-K357 Microbiology/Lab 3 cr./2 cr.
BIOL-N217 Human Physiology 5 cr.
BIOL-N261 Human Anatomy 5 cr.
CHEM-C105 / CHEM-C125 Principles of Chemistry I/ Lab 3 cr./2 cr.
CHEM-C106 / CHEM-C126 Principles of Chemistry II/ Lab 3 cr./2 cr.
CHEM-C341 / CHEM-C343 Organic Chemistry I/Lab 3 cr./2 cr.
CHEM-C342 / CHEM-C344 Organic Chemistry II/Lab 3 cr./2 cr.
CLAS-C209 Medical Terminology 2 cr.

Note: Biology and statistics courses must be taken no more than seven years before admission.

Pre-Occupational Therapy Program

Students may take any undergraduate program and include a set of core courses needed as prerequisites for a graduate degree in occupational therapy at the Indiana University School of Health and Rehabilitation Sciences. Undergraduate degree programs in biology or psychology in the School of Science may be of interest to the pre-occupational therapy student. Advising for the undergraduate degree and planning the requirements for application/admission to a graduate degree program in occupational therapy is available in those departments. An academic advisor in the IUPUI School of Health and Rehabilitation Sciences is also available for consultation.

Pre-Occupational Therapy Prerequisites for IU School of Health and Rehabilitation Sciences-IUPUI Campus

Applicants must have completed a bachelor's degree. No entrance exam is required.

BIOL-N217 Human Physiology 5 cr.
BIOL-N261 Human Anatomy 5 cr.
PSY-B310 Life Span Development 3 cr.
PSY-B380 Abnormal Psychology 3 cr.
STAT 30100 Elementary Statistical Methods I 3 cr.
or STAT-N501 or PSY-B305 or ECON-E270
CLAS-C209 Medical Terminology 2 cr.

Note: Biology and statistics courses must be taken no more than seven years before admission.

The program requires a minimum of 12 hours of observation in three or more sites.

The pre-occupational therapy student should consult with an academic advisor for updates of pre-occupational therapy criteria.

Pre-Physical Therapy Program

Students may take any undergraduate program and include a set of core courses needed as prerequisites
for a graduate degree in physical therapy at the Indiana University School of Health and Rehabilitation Sciences. Undergraduate degree programs in biology, chemistry, or psychology in the School of Science may be of interest to the pre-physical therapy student. Advising for the undergraduate degree and planning the requirements for application/admission to a graduate degree program in physical therapy is available in those departments. An academic advisor in the IUPUI School of Health and Rehabilitation Sciences is also available for consultation.

Pre-Physical Therapy Prerequisites for IU School of Health and Rehabilitation Sciences-IUPUI Campus

Applicants must have completed a bachelor’s degree. The Graduate Record Exam (GRE) is required for admission.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL-N217</td>
<td>Human Physiology</td>
<td>5 cr.</td>
</tr>
<tr>
<td>BIOL-N261</td>
<td>Human Anatomy</td>
<td>5 cr.</td>
</tr>
<tr>
<td>CHEM-C105 / CHEM-C125</td>
<td>Principles of Chemistry I/ Lab</td>
<td>3 cr./2 cr.</td>
</tr>
<tr>
<td>CHEM-C106 / CHEM-C126</td>
<td>Principles of Chemistry II/ Lab</td>
<td>3 cr./2 cr.</td>
</tr>
<tr>
<td>PHYS-P201</td>
<td>General Physics I</td>
<td>5 cr.</td>
</tr>
<tr>
<td>PHYS-P202</td>
<td>General Physics II</td>
<td>5 cr.</td>
</tr>
<tr>
<td>PSY-B104</td>
<td>Psychology as a Social Science</td>
<td>3 cr.</td>
</tr>
<tr>
<td>or PSY-B105</td>
<td>Psychology as a Biological Science</td>
<td>3 cr.</td>
</tr>
<tr>
<td>PSY-B310</td>
<td>Life Span Development</td>
<td>3 cr.</td>
</tr>
<tr>
<td>STAT 30100</td>
<td>Statistical Methods I</td>
<td>3 cr.</td>
</tr>
<tr>
<td>or STAT-N501 or PSY-B305 or ECON-E270 or SOC-R359 or SPEA-K300</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Two 3-credit hour courses in the humanities, social sciences area</td>
<td>6 cr.</td>
<td></td>
</tr>
</tbody>
</table>

The pre-physical therapy student should consult with an academic advisor for updates of pre-physical therapy requirements.

Undergraduate Research Program

IUPUI has established an Undergraduate Research Opportunities Program (UROP) to encourage and recognize undergraduates who participate in research projects with faculty in the school. Undergraduate research students may receive the transcript notation of their academic transcript concurrent with the awarding of the degree by fulfilling a set of requirements listed below. Such a transcript notation provides obvious evidence of a student’s participation in independent laboratory and scholarly research other creative work. The notation will certify and spotlight research proficiency or successful completion of some other creative activity.

UROP has established a program of requirements that must be fulfilled to qualify for transcript notation. The requirements are:

1. Students must register for and complete five credits of formal research in their departments or units. Students whose departments have no independent research credit may use the Honors Course HON-H399. The definition of research credit will be left up to the student’s department or unit, but should conform to the general definition of research and consist substantially of an independent project by the student.

2. Students must prepare a substantial written product from the research. This could include a senior thesis or journal publication. Other appropriate activities to the discipline may be substituted for this, for example, an art exhibit or other performance. Substitutions must receive prior approval from the UROP Director.

3. Students must attend an outside professional meeting in a discipline at the state, regional, or national level. Attendance at other professional events will be considered as appropriate to the discipline. The student’s faculty mentor will certify attendance. Students will be encouraged to present their work at a professional meeting or other event.

4. Students must participate in at least one annual UROP symposium. Students must present at least one oral paper to receive transcript notation. If appropriate to research and creative activity in the discipline, other types of presentations may be acceptable at the discretion of the UROP Director and with the recommendation the student’s faculty mentor.

5. Students must prepare a Research Portfolio, which may be in an electronic form. The Research Portfolio is prepared with the student’s faculty mentor and must be submitted four weeks prior to the student’s anticipated graduation date. Information about preparing a research portfolio can be found at www.urop.iupui.edu.

Further information about undergraduate research opportunities and transcript notation may be found at www.urop.iupui.edu.

Honors Program

The IUPUI Honors Program is open to students in both the Purdue and Indiana University degree programs. Students with an overall grade point average (GPA) of 3.0 after their first full semester of work, entering freshmen with a minimum combined math and verbal (critical reading) SAT score of 1200, or ACT of 26, and those who have graduated in the top 10 percent of their high school class, are automatically invited to participate in the Honors Program. Students with a GPA of less than 3.0 may be permitted to take honors courses. They should, however, discuss the matter with their academic advisor and the honors advisor before doing so.

In general, students may take no more than 6 credit hours of honors work each semester. Students may earn honors credit by taking special Honors Program courses (HON H300, HON H399, HON H400), by taking specially designated sections of multisection courses, by doing special overseas or internship work, or by contracting for
honors credit using an H-Option contract in conjunction with regular classes.

H-Option contracts are the most popular and frequent way that students earn honors credit. An H-Option requires that a student work out with the instructor of a course a specific contract for a paper, field project, oral presentation, etc., early in the semester. The contract is not merely an extension of the regular class work, but an opportunity not provided by regular assignments. All the necessary signatures of approval, including that of the director of the Honors Program, must be submitted to the Honors Program office before consent to begin the project will be given.

Students completing honors work or an honors degree will, upon request, receive an honors course record listing all honors work, to be included with official university grade transcripts.

For additional information, contact the IUPUI Honors Program, University College, UC 3140, 815 W. Michigan Street, Indianapolis, IN 46202-5164; phone (317) 274-2660; www.honors.iupui.edu.

To obtain an honors degree in computer science, mathematics, or physics, a student must have a cumulative grade point average of 3.3 and a minimum of 24 credit hours, with a 3.5 average in honors work. 6 hours of honors credit must be outside the student's major field. A senior thesis track is also available. To obtain an honors degree in biology, chemistry, geology, or psychology, a student should follow the requirements described below.

Biology
Students with a GPA of 3.3 and 12 hours of credit, or newly entering freshmen with a minimum combined math and verbal (critical reading) SAT score of 1200 or who are graduating in the top 10 percent of their high school class, qualify for the Biology Honors Program. Students wishing to participate in the Biology Honors Program must first receive approval from the Department of Biology. Students may choose from two tracks. In Track 1 (honors with thesis), students must complete 21 credit hours of honors work including 6 credit hours outside of biology and 15 credit hours in biology. These biology hours are to include 4 credit hours of BIOL K101/Biol K103 honors sections of lab/recitation, 6 credit hours in honors sections of BIOL K493, and 5 credit hours in H-Option biology courses and/or 500-600-level biology courses. In Track 2 (honors without thesis), students must complete 24 credit hours of honors work. These hours are to include 6 credit hours outside of biology, 4 credit hours of BIOL K101/Biol K103 honors sections of lab/recitation, and 14 credit hours in H-Option biology courses and/or 500-600-level biology courses.

Chemistry
Students with a minimum GPA of 3.0 may be admitted into the Chemistry Honors Program with approval of the Honors Program and the Department of Chemistry and Chemical Biology. After entering the program, maintenance of a GPA of 3.3 in all courses and of 3.5 in honors courses is necessary. The curriculum committee of the chemistry department will approve any honors Bachelor of Science degrees awarded in chemistry. In addition to meeting general honors requirements, students who intend to graduate with honors in chemistry must complete 24 honors credit hours, consisting of 1 credit hour in the CHEM C301 or CHEM C302 Chemistry Seminar, 6 credit hours in CHEM C409 Chemical Research, 5 credit hours of H-Options in undergraduate courses and/or graduate chemistry courses, and 12 credit hours of honors credit in courses outside of chemistry.

Geology
For the Bachelor of Science degree, honors students must complete 24 credit hours of honors work, 18 credit hours in geology and 6 credit hours in other approved honors courses. For the Bachelor of Arts degree, the requirements are 15 credit hours in geology and 9 credit hours outside geology in other approved honors courses. The following upper-division geology courses are approved for H-Option contracts: GEOL G205 Reporting Skills in Geoscience, GEOL G209 History of the Earth, GEOL G221 Introductory Mineralogy, GEOL G222 Introductory Petrology, GEOL G304 Principles of Paleontology, GEOL G323 Structural Geology, GEOL G334 Principles of Sedimentation and Stratigraphy, GEOL G403 Optical Mineralogy and Petrography, GEOL G404 Geobiology, plus GEOL G410 Undergraduate Research in Geology (1 cr.), GEOL G406 Introduction to Geochemistry, GEOL G413 Introduction to Geophysics, GEOL G415 Principles of Geomorphology, GEOL G416 Economic Geology, GEOL G430 Principles of Hydrology, and GEOL G499 Honors Research in Geology. The student must complete 3 credit hours in GEOL G499 Honors Research in Geology to satisfy the requirements for the honors component. The overall grade point average must be 3.3 with a 3.5 in all honors work.

Psychology
To graduate with honors, the student must earn at least 24 hours of honors credit, 6 credit hours of which must be in psychology and 6 credit hours of which must be outside of psychology (the remaining 12 credit hours can be either). At least 3 hours of this credit must be for PSY B499 Honors Research, which culminates in an honors thesis. Only grades of A or B will count for honors credit. To graduate with honors, the student must have an overall GPA of 3.3 with at least a 3.5 in honors and psychology courses.

Minors and Certificate Programs

Minors
See the Department & Centers section of this bulletin for information on minor fields of study. Minors are awarded only with the completion of a bachelor's degree. Independent Study (correspondence) courses may not be used to fulfill a minor program.

Minimum requirements for minors offered by departments in the School of Science are as follows:

- Check with the department offering the minor for additional restrictions or requirements.

Certificate Programs
See Department & Centers section of bulletin for information on certificates.

General Requirements
- Students must be seeking graduate degrees.
• The student must meet the general requirements of the Indiana University Graduate School or the Purdue University Graduate School, depending on the degree. Specific requirements of the individual department in which the student enrolls must also be met. Special departmental requirements are listed under the major department.

• At least 30 academic credits are required for the master’s degree and at least 90 academic credits are required for the Ph.D. Some programs may require more credits. The maximum number of transfer credits allowed is 12 hours, but some programs may allow fewer. The student’s major department and the Office of the Associate Dean determine acceptability of transfer credits from another college or university for Faculty Affairs and Undergraduate Education. No work may be transferred from another institution unless the grade is a B or higher.

• Students must meet graduate school resident study requirements. At least one-half of the total credit hours used to satisfy a Purdue master’s degree must be earned while in residence at IUPUI. At least 30 credit hours of IU graduate work must be completed while enrolled on a campus of Indiana University to satisfy the master’s degree. At least one-third of the total credit hours used to satisfy degree requirements must be earned (while registered for doctoral study) in continuous residence on the IUPUI campus. The major department should be consulted for other specific rules.

• All nonnative speakers of English must submit results of the Test of English as a Foreign Language (TOEFL). A minimal score of 550 on the paper version/PBT TOEFL or a minimal score of 213 on the computer-based version/CBT TOEFL is required. Departments may set higher standards. Applicants in the Indianapolis area may substitute the IUPUI English as a Second Language (ESL) Placement Examination for the TOEFL. Information about this test is available from Office of International Affairs online at http://international.iupui.edu/.

• Each student must file a plan of study that conforms to the departmental and disciplinary requirements. This is normally done in consultation with a faculty advisory committee. A tentative plan of study should be drawn up in advance of registration for the first semester of graduate work. The student and the graduate advisor should do this. Students and advisors should pay careful attention to the deadlines established by the graduate schools for filing plans of study.

• Students must meet the grade and grade point average requirements. Only grades of A, B, or C are acceptable in fulfilling graduate school requirements in any plan of study. An advisory committee or department may require higher performance than C in certain courses. Grades of Pass (P) are not acceptable. Specific cumulative grade point average requirements, if any, are determined by the individual departments.

• Students must fulfill departmental requirements regarding oral and written examinations. These requirements vary by program and students should consult the major department. The graduate school has no general requirement for oral and written examinations for the nonthesis master’s degree.

Graduate Nondegree Study

A student who has previously earned a bachelor’s degree may enroll in graduate courses without making formal application as a degree-seeking student. Application as a graduate nondegree student is, however, required and may be obtained through the IUPUI Graduate Office at the Web site www.iupui.edu/~gradoff/grad. Additional information can be obtained at the IUPUI Graduate Office, Union Building, Room UN-207, 620 Union Drive, Indianapolis, IN 46202-5167; phone (317) 274-1577. Students should consult the major department to determine how many credits earned in a nondegree status may be transferred into a graduate degree program.

Degree Programs

Graduate Certificates

Purdue University Graduate Certificates, offered through the Department of Computer and Information Science, include Databases and Data Mining, Computer Security, Software Engineering, Biocomputing, and Biometrics.

Master of Science Degrees

Purdue University Master of Science degrees are offered in all School of Science departments except Earth Sciences, which offers an Indiana University Master of Science degree. All departments award either a thesis or nonthesis option.

Doctor of Philosophy Degrees

A Purdue University Ph.D. program in Clinical Rehabilitation Psychology is offered by the Department of Psychology. Purdue University Ph.D. Programs pursued at IUPUI, arranged through Purdue, West Lafayette, are available in biology, chemistry, computer science, mathematics, physics, and an additional area of psychology.

In addition, together with the Division of Biostatistics in the Indiana University School of Medicine, the Department of Mathematical Sciences administers and offers an Indiana University Doctor of Philosophy in Biostatistics, with all requirements completed on the IUPUI campus.

Indiana University Ph.D. Programs pursued at IUPUI in departments or programs of the Indiana University School of Medicine in which School of Science faculty hold adjunct appointments are available.

Joint M.D. - Ph.D. Degrees

Several departments participate in the joint M.D. - Ph.D. program with the Indiana University School of Medicine. In this program students concurrently earn an Indiana University Doctor of Medicine degree in the School of Medicine and a Ph.D. degree arranged through the School of Science. Students interested in this option should consult the program in which they wish to earn the Ph.D.

Department of Biology

The Department of Biology offers undergraduate instructional programs leading to the Bachelor of Arts (B.A.) and Bachelor of Science (B.S.) degrees. These
programs are designed to prepare students for a variety of careers in the biological sciences and allow sufficient flexibility to accommodate the needs and interests of students. Postgraduate activities frequently selected by biology majors include graduate schools, medical and dental schools, other health care professions, agricultural schools, industrial positions in research and technology, and secondary teaching. The selection of a particular degree program in biology should be made in consultation with a departmental advisor.

The Department of Biology offers graduate study leading to the Master of Science (M.S.) degree. The M.S. degree program may be completed with a thesis option or with a nonthesis option. Among the nonthesis options is the M.S. degree in the teaching of biology, which is designed primarily for secondary school teachers, and a one-year preprofessional option for those seeking admission to medical or dental schools. The Doctor of Philosophy (Ph.D.) degree can be pursued in a variety of areas through the Purdue University Graduate School and through several programs and departments in the Indiana University School of Medicine.

The Department of Biology regards research as an important component of its programs at both the undergraduate and graduate levels. Students may work in such specific areas as microbial genetics, immunology, plant cell and molecular biology, recombinant DNA, cell biology, developmental biology, regenerative biology, microbiology, oncology, plant and animal tissue culture, and forensic biology.

Pre-Dental, Pre-Veterinary, and Pre-Optometry Programs

Admission to professional schools is highly competitive. The pre-professional student is therefore urged to elect a degree program rather than fulfilling the minimum requirements of these schools. Students who choose pre-dental, pre-veterinary medicine, and pre-optometry are usually placed in the Department of Biology, where pre-professional advising is available. However, as long as prerequisites are met, students can choose to major in any program. Pre-dental students are also encouraged to meet with the health professions advisor in the School of Science to plan for the testing and admission process required by dental schools. Refer to the “Department of Biology” section of this bulletin for the required courses for the Indiana University School of Optometry and Purdue University School of Veterinary Medicine.

Graduate students holding non-science degrees who are electing courses in the School of Science to prepare for medical or dental school are also invited to use the health professions advising service for help with the admission process.

723 W. Michigan Street, SL 306
Indianapolis, IN 46202-5132
Phone: (317) 274-0577; fax: (317) 274-2846
www.biology.iupui.edu

- **Professors** Bard, Blazer-Yost, Lees (Chair), Stocum (Dean Emeritus)
- **Professors Emeriti** Keck, Ockerse, Stillwell
- **Associate Professors** Chernoff, Clack (IUPU Columbus), Malkova, J. Marrs, K. Marrs, Randall, Wang, Watson, Wilson
- **Associate Professors Emeriti** Juillerat, Pflanzer
- **Assistant Professors** Anderson, Belecky-Adams, Chang, Dai, J. Li, Roper
- **Senior Lecturer** Yost
- **Lecturers** Clark, Vaughan, Yard, Zevin
- **Academic Specialist** Slayback-Barry
- **Adjunct Professors** Chintalacharuvu, Chism, Krishnan, McIntyre, Petolino, Schild, Schoepp, Siddiqui, Sloop, C. Smith, R. Smith, Srou, Vlahos, Witzmann
- **Departmental Academic Advisors**
 - Preprofessional: Yost
 - Prepharmacy, Preoptometry, Preveterinary: Alexander
 - Biology programs: Alexander
 - Graduate programs: Lees

Biology Plans of Study

No single semester-by-semester plan of study will guide all students through the degree options because of the flexibility encouraged within the programs. However, one possible sequence of courses for each option is given below; variations from these examples of plans of study should be made in consultation with a departmental advisor.

Bachelor of Arts Sample Program (124 cr. required)

Freshman Year

First Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCI-I120</td>
<td>Windows on Science</td>
<td>1</td>
</tr>
<tr>
<td>BIOL-K101</td>
<td>Concepts of Biology I</td>
<td>5</td>
</tr>
<tr>
<td>CHEM-C105</td>
<td>Principles of Chemistry I</td>
<td>3</td>
</tr>
<tr>
<td>CHEM-C125</td>
<td>Experimental Chemistry I</td>
<td>2</td>
</tr>
<tr>
<td>MATH 15300</td>
<td>Algebra and Trigonometry I</td>
<td>3</td>
</tr>
<tr>
<td>ENG-W131</td>
<td>Elementary Composition I</td>
<td>3</td>
</tr>
</tbody>
</table>

| Total | 17 |

Second Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL-K103</td>
<td>Concepts of Biology II</td>
<td>5</td>
</tr>
<tr>
<td>CHEM-C106</td>
<td>Principles of Chemistry II</td>
<td>3</td>
</tr>
<tr>
<td>CHEM-C126</td>
<td>Experimental Chemistry II</td>
<td>2</td>
</tr>
<tr>
<td>MATH 15400</td>
<td>Algebra and Trigonometry II</td>
<td>3</td>
</tr>
</tbody>
</table>

| Total | 13 |
Bachelor of Science Sample Program (124 cr. required)

The major has 40 credit hours.

The School of Science Purdue degrees are 124 credit hours. To graduate in four years a student generally must take four semesters of 15 credits and four semesters of 16 credits. When figuring the number of credit hours that you will take each semester, students should be sure to consider the effect on total number of credit hours balanced over four years.

Freshman Year

First Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCI-I120 Windows on Science</td>
<td>1</td>
</tr>
<tr>
<td>BIOL-K101 Concepts of Biology I</td>
<td>5</td>
</tr>
<tr>
<td>CHEM-C105 Principles of Chemistry I</td>
<td>3</td>
</tr>
<tr>
<td>CHEM-C125 Experimental Chemistry I</td>
<td>2</td>
</tr>
<tr>
<td>ENG-W131 Elementary Composition I</td>
<td>3</td>
</tr>
</tbody>
</table>

Second Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL-K103 Concepts of Biology II</td>
<td>5</td>
</tr>
<tr>
<td>CHEM-C106 Principles of Chemistry II</td>
<td>3</td>
</tr>
<tr>
<td>CHEM-C126 Experimental Chemistry II</td>
<td>2</td>
</tr>
<tr>
<td>MATH 23100 Calculus for the Life Sciences I</td>
<td>3</td>
</tr>
<tr>
<td>ENG-W132 Elementary Composition II</td>
<td>3</td>
</tr>
</tbody>
</table>

Sophomore Year

Third Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL-K322 Genetics and Molecular Biology</td>
<td>3</td>
</tr>
<tr>
<td>BIOL-K323 Genetics and Molecular Biology Lab</td>
<td>2</td>
</tr>
<tr>
<td>CHEM-C341 Organic Chemistry I</td>
<td>3</td>
</tr>
<tr>
<td>CHEM-C343 Organic Chemistry Laboratory I</td>
<td>2</td>
</tr>
<tr>
<td>Humanities-List H</td>
<td>3</td>
</tr>
<tr>
<td>Elective or major’s course</td>
<td>3</td>
</tr>
</tbody>
</table>

Fourth Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL-K322 Genetics and Molecular Biology</td>
<td>3</td>
</tr>
<tr>
<td>CHEM-C342 Organic Chemistry II</td>
<td>2</td>
</tr>
<tr>
<td>CHEM-C344 Organic Chemistry Laboratory II</td>
<td>3</td>
</tr>
<tr>
<td>COMM-R110 Fund of Speech Communication</td>
<td>3</td>
</tr>
<tr>
<td>CSCI Course</td>
<td>3</td>
</tr>
</tbody>
</table>

Junior Year

Fifth Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL-K341 Principles of Ecology and Evolution</td>
<td>3</td>
</tr>
<tr>
<td>PHYS-P201 General Physics I</td>
<td>5</td>
</tr>
<tr>
<td>Comparative World Cultures-List C</td>
<td>3</td>
</tr>
<tr>
<td>Foreign language I</td>
<td>3</td>
</tr>
<tr>
<td>Social Sciences-List S</td>
<td>3</td>
</tr>
</tbody>
</table>

Sixth Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL Course and Lab (Area II)</td>
<td>5</td>
</tr>
<tr>
<td>HIST-H114 History of Western Civilization II</td>
<td>3</td>
</tr>
<tr>
<td>CHEM-C341 Organic Chemistry I</td>
<td>3</td>
</tr>
<tr>
<td>Foreign language II</td>
<td>3</td>
</tr>
</tbody>
</table>

Senior Year

Seventh Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL Course and Lab (Area I)</td>
<td>5</td>
</tr>
<tr>
<td>300 level elective</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foreign language III</td>
<td>4</td>
</tr>
<tr>
<td>Elective</td>
<td>3</td>
</tr>
</tbody>
</table>

Eighth Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL-K490 Capstone in Biology (or BIOL-K493 Independent Research)</td>
<td>1</td>
</tr>
<tr>
<td>BIOL Course and Lab (Area III)</td>
<td>4</td>
</tr>
<tr>
<td>Electives</td>
<td>7</td>
</tr>
<tr>
<td>CAND 99100 Candidate for Graduation</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bachelor of Science Sample Program (124 cr. required)</td>
<td>13</td>
</tr>
<tr>
<td>BIOL-K322 Genetics and Molecular Biology</td>
<td>3</td>
</tr>
<tr>
<td>BIOL-K323 Genetics and Molecular Biology Laboratory</td>
<td>2</td>
</tr>
<tr>
<td>CHEM-C341 Organic Chemistry I</td>
<td>3</td>
</tr>
<tr>
<td>CHEM-C343 Organic Chemistry Laboratory I</td>
<td>2</td>
</tr>
<tr>
<td>MATH 23200 Calculus for the Life Sciences II</td>
<td>3</td>
</tr>
<tr>
<td>Humanities-List H</td>
<td>3</td>
</tr>
</tbody>
</table>

Fourth Semester

BIOL Course and Lab (Area III)	4
CHEM-C342 Organic Chemistry II	3
CHEM-C344 Organic Chemistry Laboratory II	2
COMM-R110 Fundamentals of Speech Communication	3
Social Sciences-List S	3

Junior Year

Fifth Semester

BIOL-K341 Principles of Ecology and Evolution	3
BIOL-K342 Principles of Ecology and Evolution Laboratory	2
PHYS-P201 General Physics I	5
CSCI Course	3
Comparative World Cultures-List C	3

Sixth Semester

PHYS-P202 General Physics II	5
HIST-H114 History of Western Civilization II	3
BIOL Course and Lab (Area II)	5
Elective	3

Senior Year

Seventh Semester

| BIOL Course and Lab (Area I) | 5 |
| BIOL-K493 Independent Research | 1 |

Eighth Semester

BIOL-K493 Independent Research	1
BIOL-K494 Senior Research Thesis	1
BIOL major’s requirement	3
Elective or major’s requirement	4
Elective or major’s requirement	4
CAND 99100 Candidate for Graduation	0

Minor in Biology

The Department of Biology offers an undergraduate minor in biology with the following requirements:

- BIOL-K101 Concepts of Biology I (5 cr.)
- BIOL-K103 Concepts of Biology II (5 cr.)
- BIOL-K322 Genetics and Molecular Biology (3 cr.)
- BIOL-K341 Principles of Ecology and Evolution (3 cr.)

Additional BIOL-K prefixed biology course of at least 3 credits

At least half of the minimum 19 credit hours required to minor in biology must be completed at IUPUI. The minor requires a minimum grade point average of 2.0, and all grades must be C- or higher. Correspondence courses may not be used to fulfill requirements for the minor.

Honors in Biology

The Department of Biology offers two separate tracks that lead to a degree with honors. Admission to either program requires a combined math and verbal (critical reading) SAT of 1200, or placement in the top 10 percent of the high school class for incoming freshmen, or a minimum GPA of 3.3 based on at least 12 hours of university work for continuing students. Students must maintain an overall GPA of 3.3 and an honors GPA of 3.5 to remain in good standing in the program.

Track 1 in biology is an honors-with-thesis program consisting of a total of 21 credit hours of honors registrations. 6 credit hours are taken outside of the major; 4 credit hours are taken as the special experimental laboratory and recitation sections of freshman biology (BIOL-K101 and BIOL-K103); 5 hours are taken as H-Option registrations or 500-level courses; and 5 credit hours are taken as BIOL-K493 Independent Research and 1 credit hour for BIOL-K494 Senior Research Thesis.
Track 2 is an honors program without thesis and consists of a total of 24 credit hours of honors registrations. This option requires 6 credit hours of honors outside of the major, the BIOL-K101 and BIOL-K103 sections, and 14 credit hours of H-Option or 500-level course registrations.

Bachelor of Arts Degree Requirements

Degree Requirements

First-Year Experience Course Beginning freshmen and transfer students with fewer than 18 credit hours are required to take SCI-I220 Windows on Science (1 cr.) or an equivalent first-year experience course.

Area Requirements

Area I English Composition and Communication Skill

See the School of Science requirements under “Undergraduate Programs” in this bulletin.

Written Communication (6 cr.)

ENG-W131 Elementary Composition I (3 cr.)

A second writing course with ENG-W131 as a prerequisite, e.g., ENG-W132 (or ENG-W150), ENG-W231, TCM 22000, or TCM 32000.

Oral communication

COMM-R110 Fundamentals of Speech Communication (3 cr.)

Area II Foreign Language

See School of Science requirements under “Undergraduate Programs.” Students must have first-year proficiency in a foreign language (10 cr.): exam placement, two 5-credit courses, or three courses (3 cr., 3 cr., and 4 cr.).

Area IIIA Humanities, Social Sciences, and Comparative World Cultures (12 cr.)

- HIST-H114 Western Civilization II or HIST-H109 Perspectives on the World: 1800-Present
- List H course: Choose one course (3 cr.) from this list. The list of course choices is located under the School of Science requirements “Undergraduate Programs” in this bulletin.
- List S course: Choose one course (3 cr.) from this list. The list of course choices is located under the School of Science requirements “Undergraduate Programs” in this bulletin.
- List C course: Choose one course (3 cr.) from this list. The list of course choices is located under the School of Science requirements “Undergraduate Programs” in this bulletin.

Area IIIB Junior/Senior Integrator

The Junior/Senior Integrator requirement is suspended indefinitely as a School-level requirement. No junior/senior integrator course is required for biology majors.

Area IIIC Physical and Biological Sciences

Physics Two semesters of basic physics (PHYS-P201 / PHYS-P202 or PHYS 15200 / PHYS 25100).

Chemistry Two semesters of Principles of Chemistry (CHEM-C105/CHEM-C125 3/2 cr.; CHEM-C106/CHEM-C126 3/2 cr.), two semesters of organic chemistry lecture and one semester of laboratory (CHEM-C341, CHEM-C342, CHEM-C343), plus prerequisite basic sequence or background to enter sequence above. The second laboratory in organic chemistry (CHEM-C344) is required for admission to some medical schools and is strongly recommended for students in most other programs. Consult a departmental advisor.

Area IIID Mathematical Sciences

MATH 15900 or MATH 15300 / MATH 15400. (However, the starting point for mathematics courses should be worked out with a departmental advisor based on the math placement test and/or background of the student.)

The computer science requirement may be satisfied with CSCI-N201, CSCI-N207, or CSCI-N211.

Note: Computer Science CSCI-N241 and CSCI-N299 do not count in Area IIID, but may count as a general elective.

Area IV Biology Requirements

Required Core Sequence:

- BIOL-K101 / BIOL-K103 Concepts of Biology I and II
- BIOL-K322 Genetics and Molecular Biology
- BIOL-K341 Principles of Ecology and Evolution

Upper-Level Courses

- At least one lecture course from each of areas I-III listed below.
- Three laboratory courses beyond BIOL-K101 / BIOL-K103 selected from areas I-IV below. To receive credit for a laboratory for which there is an accompanying pre- or corequisite lecture, the lecture must be completed with a minimum grade of C-. A maximum of 2 credit hours of BIOL-K493 Independent Research may be applied to the biology credit hour requirement. BIOL-K493 will count as one laboratory course.
- Capstone Experience. This requirement is met by taking either BIOL-K493 Independent Research (1 cr.) or BIOL-K490 Capstone (1 cr.) in the senior year. BIOL-K493 cannot be used as both a third laboratory and as a Capstone. BIOL-K490 addresses the integration of knowledge in the principles of undergraduate education as well as values and ethics as they relate to the student’s major. It is generally taken in the senior year. The capstone is an independent, creative effort by the student that is integrative and builds on the student’s previous work in the major; it may include research projects, independent study and projects, a practicum, a seminar, and/or a field experience.
- Electives consisting of sufficient lecture and laboratory course work to total 30 credit hours (including core sequence credit hours). These credits may be selected from any of the areas I-IV below.
- Residency Credits. In order to graduate students must have a minimum of 32 credit hours at the 300 level or above at IUPUI. B.A. students usually need at least one 300 level course in addition to their biology and chemistry courses to meet this requirement.

Areas/Electives

Molecular Area

- Undergraduate Level
Bachelor of Science Degree Requirements

First-Year Experience Course Beginning freshmen and transfer students with fewer than 18 credit hours are required to take SCI-I120 Windows on Science (1 cr.) or an equivalent first-year experience course.

Area I English Composition and Communication Skills See the School of Science requirements under “Undergraduate Programs” in this bulletin. The second semester of English composition may be satisfied with ENG-W132 (or ENG-W150), ENG-W231, TCM 22000, or TCM 32000.

Area II Foreign Language No foreign language proficiency is required for a Bachelor of Science degree. However, knowledge of a foreign language is strongly recommended for any student planning to attend graduate school.

Area IIIA Humanities, Social Sciences, and Comparative World Cultures (12 cr.)

- HIST H114 Western Civilization II or HIST-H109 Perspectives on the World: 1800-Present
- List H course: Choose one course (3cr.) from this list. The list of course choices is located under the School of Science requirements “Undergraduate Programs” in this bulletin.
- List S course: Choose one course (3cr.) from this list. The list of course choices is located under the School of Science requirements “Undergraduate Programs” in this bulletin.
- List C course: Choose one course (3cr.) from this list. The list of course choices is located under the School of Science requirements “Undergraduate Programs” in this bulletin.

Area IIIB Junior/Senior Integrator The Junior/Senior Integrator requirement is suspended indefinitely as a School-level requirement. No junior/senior integrator course is required for biology majors.

Area IIIC Physical and Biological Sciences

Physics Two semesters of basic physics (PHYS-P201 / PHYS-P202 or PHYS 15200 / PHYS 25100).

Chemistry Two semesters of Principles of Chemistry (CHEM-C105/CHEM-C125 3/2 cr.; CHEM-C106/CHEM-C126 3/2 cr.), two semesters of organic chemistry with laboratories (CHEM-C341, CHEM-C342, CHEM-C343, CHEM-C344), plus prerequisite basic sequence or background to enter sequence above. (A course in analytical chemistry or biochemistry is also strongly recommended; determination should be made in consultation with departmental advisor.)

Area IIID Mathematical Sciences Course work through two semesters of calculus (MATH 23100 / MATH 23200 or MATH 22100 / MATH 22200 or MATH 16500 / MATH 16600). Starting point to be worked out with departmental advisor based on the math placement test and/or background of the student. The computer science requirement may be satisfied with CSCI-N201, CSCI-N207, or CSCI-N211.
Note: Computer Science CSCI-N241 and CSCI-N299 do not count in Area III, but may count as a general elective.

Area IV Biology Requirements

Required Core Sequence
- BIOL-K101 / BIOL-K103 Concepts of Biology I and II
- BIOL-K322 Genetics and Molecular Biology
- BIOL-K341 Principles of Ecology and Evolution

Capstone; met by option A or B.
- A. BIOL-K493 Independent Research; 2 cr. min., 3 cr. max. and BIOL-K494 Senior Research Thesis
- B. BIOL-K490 Capstone

Upper-Level Courses
- A. At least one lecture course from each of areas I-III listed below.
- B. Four laboratory/lecture courses beyond BIOL-K101 / BIOL-K103 selected from areas I-IV. To receive credit for a laboratory for which there is an accompanying pre- or corequisite lecture, the lecture must be completed with a minimum grade of C-.
- C. Capstone for the BS may be met with BIOL-K493 Independent Research (2 to 3 credit hours) and BIOL-K494 Senior Research Thesis or by taking the BIOL-K490 Capstone. The BIOL-K493 / BIOL-K494 option will consist of the completion BIOL-K493 and the preparation of a written report on the results of the research project. The title and nature of the BIOL-K493 / BIOL-K494 sequence is to be determined in consultation with the department research sponsor.
- D. Electives consisting of sufficient lecture and laboratory course work to total 40 credit hours (including core sequence credit hours). These credits may be selected from any of the areas I-IV below.
- E. Residency Credits. In order to graduate students must have a minimum of 32 credit hours at the 300 level or above at IUPUI. B.S. students usually fulfill the requirement with biology and chemistry courses. Transfer students may need additional 300 level hours.

Areas/Electives

I. Molecular Area
- Undergraduate Level
 - BIOL-K338 Introductory Immunology
 - BIOL-K339 Immunology Laboratory
 - BIOL-K483 Biological Chemistry
 - BIOL-K484 Cellular Biochemistry
- Undergraduate and Graduate Level
 - BIOL 50700 Principles of Molecular Biology
 - BIOL 51600 Molecular Biology of Cancer
 - BIOL 53000 Introductory Virology
 - BIOL 55000 Plant Molecular Biology
 - BIOL 55900 Endocrinology
 - BIOL 56100 Immunology
 - BIOL 56400 Molecular Genetics of Development
 - BIOL 57000 Biological Membranes

II. Cellular Area
- Undergraduate Level
 - BIOL-K324 Cell Biology
 - BIOL-K325 Cell Biology Laboratory
 - BIOL-K356 Microbiology
 - BIOL-K357 Microbiology Laboratory
- Undergraduate and Graduate Level
 - BIOL 56600 Developmental Biology
 - BIOL 57100 Developmental Neurobiology

III. Organismal Area
- Undergraduate Level
 - BIOL-K331 Embryology
 - BIOL-K333 Embryology Laboratory
 - BIOL-K350 Comparative Animal Physiology
 - BIOL-K411 Global Change Biology
- Undergraduate and Graduate Level
 - BIOL 55600 Physiology I
 - BIOL 55700 Physiology II

IV. Biotechnology Electives
- Undergraduate Level
 - BIOL-K493 Independent Research
- Undergraduate and Graduate Level
 - BIOL 54000 Topics in Biotechnology
 - BIOL 54800 Techniques in Biotechnology
 - BIOL 56800 Regenerative Biology and Medicine

Additional laboratory courses for the B.S.
- BIOL-K323 Genetics and Molecular Biology Laboratory
- BIOL-K342 Principles of Ecology and Evolution Laboratory

A maximum of 20 credit hours of biology earned previously at other institutions is applicable toward the major for the B.S. degree.

Once admitted, students are expected to complete their course requirements within the major at IUPUI.

Master of Science

Degree Options

M.S. Non-thesis in Interdisciplinary Biology This program requires a minimum of 30 credit hours of registration, at least 21 of which must be in biology. For students who wish to combine biology training with work in a secondary area as a mechanism to meet career objectives, up to 9 credit hours can be taken in the secondary area. Advanced-level undergraduate course work hours are limited to 6. Examples of secondary areas include, but are not limited to, chemistry, mathematics, public affairs, business, statistics, law, computer science, administration, and, for those interested in teaching, education. For those students with no secondary area of interest, all 30 credit hours may be taken in biology. The program requires registrations in BIOL 59500 Special Assignments and BIOL 69600 Seminar. The former consists of an
independent, creative project done in association with a faculty member. Typical examples include a limited laboratory research experience or a library research assignment. The results of the project are reported both in writing and orally in BIOL 69600.

M.S. Pre-professional Non-thesis
This program also consists of a minimum of 30 credit hours, all of which must be taken over two semesters. This challenging program is highly intensified and is open only to those students who meet a high admission standard based on undergraduate GPA and GRE scores. The program is available to those students planning careers in medicine, dentistry, optometry, or other health-related fields and differs from the interdisciplinary non-thesis M.S. by having no requirement for the BIOL 59500 and BIOL 69600 registrations.

M.S. with Thesis
This 30 credit hour program requires a minimum of 9 credit hours of 500-level and 600-level course work in biology, chosen in consultation with the student’s graduate advisory committee, and intensive research leading to a thesis. Most full-time students should expect to spend two full years to complete this program. Areas in which research opportunities are available include: immune dysfunction, yeast molecular biology, renal physiology, wound repair and tissue regeneration, oncology, tumor immunology, plant hormones, antifungal antibiotics, developmental genetics, cell biology, membrane biochemistry and biophysics, molecular toxicology, plant tissue culture, plant physiological ecology, plant and animal molecular biology, and regenerative biology and medicine. The overall emphasis of the department’s research program focuses on questions at the cellular, biochemical, and molecular levels. Many of the projects provide a foundation in biotechnology and an excellent preparation for biomedical and industrial applications.

Admission Requirements
- Students must hold a bachelor’s degree from an accredited institution of higher learning and demonstrate good preparation in biological sciences, organic chemistry, physics, and mathematics.
- Students must take the GRE aptitude tests.
- Three letters of recommendation are required.
- A minimum graduation grade point average of 3.0 or its equivalent is required for unconditional admission.

Transfer of Credit
Transfer credit to be used in the nonthesis option may be given for up to 9 credit hours of graduate work completed elsewhere with a grade of B or higher. Such credit may be used only in the secondary area and will be accepted only after one semester of satisfactory work is completed in residence at IUPUI. Transfer credit is not accepted in the thesis option. Up to 12 hours of biology graduate credit taken at IUPUI under graduate nondegree status may be transferred to the thesis or nonthesis options.

Requirements

Grades
Only grades of A, B, or C are acceptable, although performance higher than C may be required. Pass/Fail grades are unacceptable.

Residence Requirements
Thirty (30) credit hours of registration are required for the M.S. degree. Students entering with advanced standing from another graduate school are given residence credit commensurate with the graduate work accomplished.

Final Examination
A comprehensive written or oral examination in the individual’s primary area may be required of nonthesis students unless their cumulative GPA is 3.0 or higher. The final examination for thesis students will consist of a thesis defense, which will be done in conjunction with BIOL 69600 Seminar.

All students are required to take BIOL 69600 Seminar. The creative project required of all nonthesis students will provide the basis for the public presentation.

Financial Assistance
The Department of Biology has financial support available in the form of tuition-refund assistantships, associate faculty positions, fellowships, and stipends from local industry on a limited basis.

Doctor of Philosophy
Doctor of Philosophy—Purdue University
The degree of Doctor of Philosophy (Ph.D.), the highest earned degree conferred by Purdue University, can be pursued in the Department of Biology through Purdue University, West Lafayette. The doctoral degree is restricted to those scholars who have demonstrated superior ability in a recognized academic discipline. The Ph.D. degree is not awarded on the basis of time spent in residence or following the completion of any specific number of formal courses, nor is the degree granted on the basis of miscellaneous course studies and research effort. The entire Ph.D. program must be rationally related, should be highly research oriented, and should culminate in a thesis of scholarly merit indicative of the candidate’s ability to conduct original research in a recognized field of specialization.

Ph.D. programs are directed by professors who work in close association with selected graduate students. In practice, doctoral programs are composed of formal courses, guided individual study in a chosen field or discipline, study in such cognate subjects as may be required by the candidate’s advisory committee, and original research that serves as the basis of a scholarly thesis.

As part of their graduate training, all Ph.D. candidates are expected to teach at least quarter time for one year.

Ninety (90) credit hours of registration are required for the Ph.D. degree. Students entering with advanced standing from another graduate school are given residence credit commensurate with the graduate work accomplished.

Fields of Study
Ph.D. degrees are offered in most of the fields described for the M.S. degree. Until a major professor is named, a student is counseled by a temporary advisor. In order to help familiarize students with the department and to assist the student in the selection of a major professor, a series of laboratory rotations is available.
Admission and Qualifying Examination

To enter the Ph.D. program, a student must satisfy the admission requirements for the M.S. with thesis option and also take a qualifying examination in two areas at the end of the first year of graduate study. By the end of the second year, both must have been passed with a grade of B or higher. The examination areas are as follows: (1) immunobiology, (2) biochemistry and molecular biology, (3) cell and developmental biology, and (4) membrane biology.

Plan of Study

Each prospective candidate for the doctoral degree, with the approval of the head of the Department of Biology, shall select a major professor from the department who will act as the chairperson of the student’s advisory committee and who will direct the research. An advisory committee of five faculty members who have been approved to guide graduate students will then be appointed.

The plan of study shall include a primary area and related area or areas. The plan will be appropriate to meet the needs of the student in a chosen field as determined by the advisory committee. The Graduate School of Purdue University does not impose any minimum number of required course credit hours, but the plan shall specify the area or field of interest in which the student proposes to study and to conduct research. The plan will include the specific courses that the student is expected to complete, all specific course and language (if any) requirements, and 2 credit hours of BIOL 69600 Seminar.

The department or school head, the school dean, and the dean of the Graduate School at Purdue University, West Lafayette, must approve the plan of study. The graduate school dean reserves the right to refer any or all plans of study to the Purdue Graduate Council for review and approval when deemed advisable. The Graduate Council has the final authority to supervise the quality of all graduate programs.

Preliminary Examination

After the student has completed most of the formal study to the satisfaction of the advisory committee and met any language requirement(s), the student becomes eligible to take the preliminary examinations. The results of these written and oral examinations will be reported to the graduate school by the examining committee with an appropriate recommendation for the student’s admission to candidacy, continued preparatory study, or discontinuation. The graduate school dean reserves the right to appoint additional members to the preliminary examining committee. The dean must be informed of the date and place of the examination and the membership of the examining committee at least two weeks before the examination. No examining committee shall have fewer than three faculty members.

The examining committee will conduct the written preliminary examination. In some cases, parts of the examination may be delegated to certain other staff members, but the final responsibility for the examination rests with the student’s examining committee.

If the student does not pass the preliminary examinations, at least one semester must elapse before reexamination. Should the preliminary examinations be failed twice, the student may not be given a third examination, except upon the recommendation of the examining committee and with special approval of the Graduate Council.

Ph.D. Thesis

After admission to candidacy, the candidate must devote at least two semesters to research before the final examination.

The special research carried on as part of the doctoral work is expected to make a definite contribution to the candidate’s chosen field of knowledge—a contribution of sufficient importance to merit publication. Each candidate must, therefore, prepare a thesis showing the research results.

After the research has been completed and the thesis written, the candidate shall be given a final examination in which the candidate defends the thesis and demonstrates to the examining committee all of the capabilities for which the Doctor of Philosophy degree is awarded. The examining committee shall consist of no fewer than four members. The dean of the graduate school reserves the right to appoint additional committee members and must be informed of the place and time of the final examination at least two weeks in advance.

Doctor of Philosophy—Indiana University

The Ph.D. degree conferred by Indiana University can be pursued under the direction of faculty in the Department of Biology who hold adjunct appointments with departments or programs in the Indiana University School of Medicine. All Indiana University doctoral degrees require 90 credit hours of registration; specific course and examination requirements vary with the department or program in which the student is enrolled. Contact the graduate program director in the Department of Biology for additional information.

Other Programs

Bachelor of Arts with Secondary Teaching Certification

Students planning to teach biology at the secondary school level usually enter the Bachelor of Arts degree

Pre-medical Studies

Most students interested in a career in medicine follow the Biology B.A. or B.S. program of study. For those who major in another discipline consult with the basic pre-medical requirements listed in the School of Science section on pre-medical preparation. Elective hours within this program will be used to satisfy the requirements of the School of Education and the State of Indiana.

Prepharmacy

The prepharmacy program comprises two years of study at IUPUI during which time students will apply to a Pharm.D. program at a school of pharmacy. The following scheme provides the course preparation for application to the School of Pharmacy and Pharmacal Sciences at Purdue University, West Lafayette. A similar program has been designed to interface with the Butler University
School of Pharmacy; consult the prepharmacy advisor in the Department of Biology.

Prepharmacy Sample Program (Purdue University)

Year One

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL-K101 Concepts of Biology I</td>
<td>5</td>
</tr>
<tr>
<td>CHEM-C105 Principles of Chemistry I</td>
<td>3</td>
</tr>
<tr>
<td>CHEM-C125 Experimental Chemistry I</td>
<td>2</td>
</tr>
<tr>
<td>ENG-W131 Elementary Composition I</td>
<td>3</td>
</tr>
<tr>
<td>MATH 23100 Calculus for the Life Sciences I</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>16 credits</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Second Semester</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL-K103 Concepts of Biology II</td>
<td>5</td>
</tr>
<tr>
<td>CHEM-C106 Principles of Chemistry II</td>
<td>3</td>
</tr>
<tr>
<td>CHEM-C126 Experimental Chemistry II</td>
<td>2</td>
</tr>
<tr>
<td>ENG-W132 Elementary Composition II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 23200 Calculus for the Life Sciences II</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>16 credits</td>
</tr>
</tbody>
</table>

Summer Session

Humanities and Behavioral Sciences (Group 1) Elective	3
Business and Administration (Group 2) Elective	3
	6 credits

Year Two

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM-C341 Organic Chemistry I</td>
<td>3</td>
</tr>
<tr>
<td>CHEM-C343 Organic Chemistry Laboratory I</td>
<td>2</td>
</tr>
<tr>
<td>ECON-E101 Survey of Current Economic Issues and Problems</td>
<td>3</td>
</tr>
<tr>
<td>PHYS-P201 General Physics I</td>
<td>5</td>
</tr>
<tr>
<td>Science and Technology (Group III) Elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>16 credits</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Second Semester</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL-K356 Microbiology</td>
<td>3</td>
</tr>
<tr>
<td>BIOL-K357 Microbiology Laboratory</td>
<td>2</td>
</tr>
</tbody>
</table>

Years Three and Beyond

The Doctor of Pharmacy (Pharm.D.) degree is now required to obtain a license to practice pharmacy. This program encompasses six years of study (two prepharmacy and four professional). Years three through six for the Pharm.D. degree are to be completed at the School of Pharmacy and Pharmacal Sciences, Purdue University, West Lafayette.

Preoptometry

This program is specifically designed for transfer to the professional program at Indiana University Bloomington. Typically, three preoptometry years are spent at IUPUI.

Preoptometry Program Requirements

- Inorganic Chemistry
 - CHEM-C105 / CHEM-C125 and CHEM-C106 / CHEM-C126 (10 cr.)
- Organic Chemistry
 - CHEM-C341 and CHEM-C342 or CHEM-C343 (5-6 cr.)
- Mathematics
 - MATH 16500 (4 cr.)
- Physics
 - PHYS-P201 / PHYS-P202 (10 cr.)
- Psychology
 - PSY-B104 and PSY-B105 (6 cr.)
- Statistical techniques
 - PSY-B305 or STAT 27000 or ECON 27000 (3 cr.)
- Biology
 - BIOL-K101 and BIOL-K103 (10 cr.)
- Microbiology
 - BIOL-K356 and BIOL-K357 (5 cr.)
- Genetics or Cell Biology
 - BIOL-K322 or BIOL-K324 (3 cr.)
- English Composition
 - ENG-W131 (3 cr.)
- Arts and humanities
 - Variable (6 cr.)
- Social and behavioral sciences
 - Variable (6 cr.)
- Foreign language (6-8 cr.)
• (Note: waived with 2 years of high school language foreign language with grades or C or better)

• Electives
 • BIOL-N261 and BIOL-N217 recommended as needed

90 credit hours

Preveterinary Medicine
IUPUI offers an organized two-year (including summers) preveterinary curriculum for students who want to meet the requirements for admission to the Purdue University School of Veterinary Medicine. This curriculum provides for a rigorous program in the biological and physical sciences that may be used as a basis for achieving a Bachelor of Science if the student is not admitted to veterinary school or wants to complete the undergraduate degree. Most students complete a Bachelor of Arts or Science degree before being admitted to the School of Veterinary Medicine at Purdue University.

Students who have successfully completed two or more years of preveterinary instruction (including all required courses) at IUPUI are eligible to apply for admission to the School of Veterinary Medicine at Purdue University, West Lafayette. Admission to the School of Veterinary Medicine is highly competitive. Students are selected on the basis of college course work and grades, Graduate Record Exam (GRE) scores (General Aptitude Test only), and the extent and nature of the applicant’s experience with animals and practicing veterinarians. The selection committee is also concerned with the individual’s level of motivation, degree of maturity, and general character.

The requirements for admission to the preveterinary curriculum also serve as general requirements for admission to many College of Agriculture programs at Purdue.

Preveterinary Medicine Sample Program
Freshman Year

<table>
<thead>
<tr>
<th>First Semester</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL-K101 Concepts of Biology I</td>
<td>5</td>
</tr>
<tr>
<td>CHEM-C105 Principles of Chemistry I</td>
<td>3</td>
</tr>
<tr>
<td>CHEM-C125 Experimental Chemistry I</td>
<td>2</td>
</tr>
<tr>
<td>MATH 23100 Calculus for the Life Sciences I</td>
<td>3</td>
</tr>
<tr>
<td>ENG-W131 Elementary Composition I</td>
<td>3</td>
</tr>
<tr>
<td>16 credits</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Second Semester</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL-K103 Concepts of Biology II</td>
<td>5</td>
</tr>
<tr>
<td>CHEM-C106 Principles of Chemistry II</td>
<td>3</td>
</tr>
<tr>
<td>CHEM-C126 Experimental Chemistry II</td>
<td>2</td>
</tr>
</tbody>
</table>

| **16 credits** | |

<table>
<thead>
<tr>
<th>Summer Sessions</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Humanities and Social Science Electives</td>
<td>6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sophomore Year</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Third Semester</td>
<td></td>
</tr>
<tr>
<td>BIOL-K322 Genetics and Molecular Biology</td>
<td>3</td>
</tr>
<tr>
<td>BIOL-K323 Genetics and Molecular Biology Laboratory</td>
<td>2</td>
</tr>
<tr>
<td>CHEM-C341 Organic Chemistry I</td>
<td>3</td>
</tr>
<tr>
<td>CHEM-C343 Organic Chemistry Laboratory I</td>
<td>2</td>
</tr>
<tr>
<td>PHYS-P201 General Physics I</td>
<td>5</td>
</tr>
<tr>
<td>15 credits</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fourth Semester</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM-C342 Organic Chemistry II</td>
<td>3</td>
</tr>
<tr>
<td>CHEM-C344 Organic Chemistry Laboratory II</td>
<td>2</td>
</tr>
<tr>
<td>COMM-R110 Fundamentals of Speech Communication</td>
<td>3</td>
</tr>
<tr>
<td>PHYS-P202 General Physics II</td>
<td>5</td>
</tr>
<tr>
<td>STAT 30100 Elementary Statistical Methods I</td>
<td>3</td>
</tr>
<tr>
<td>16 credits</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Summer Sessions</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Humanities, social science electives</td>
<td>6</td>
</tr>
<tr>
<td>BIOC-B500 Introductory Biochemistry</td>
<td>3</td>
</tr>
<tr>
<td>9 credits</td>
<td></td>
</tr>
</tbody>
</table>

NOTE: Students must also take Animal Science on-line from Purdue University West Lafayette.

Junior and Senior Years
Transfer to School of Veterinary Science and Medicine, Purdue University, West Lafayette.

Biotechnology Program
IUPUI
723 W. Michigan Street, SL 306
Indianapolis, IN 46202-5132
Phone: (317) 274-0577; fax: (317) 274-2846
This program is available only to students who have an earned Associate degree in Biotechnology from Ivy Tech Community College.

What has become known as the Biotechnology industry has been going through some transforming changes that mandate more sophisticated workforce training at many levels. In order to place central Indiana at the forefront in the preparation of a suitable workforce for existing industry as well as a flexible training program that may be attractive to biotechnology industries considering a move to Indiana, IUPUI has developed education-training programs at the bachelor’s level. This program has been developed in collaboration with the several local biotechnology industries to ensure relevance and appropriateness of the education-training program content. The program includes an extensive industrial internship that, along with the basic and applied courses in biotechnology, meet industrial objectives for preparation for positions in the biotechnology industry.

The curriculum of the bachelor’s degree also allows sufficient flexibility within the major and with electives to meet basic requirements for application to most graduate and professional programs.

Degree Characteristics

Bachelor of Science in Biotechnology (BSB)
- 124 credit hour Purdue degree
- additional courses in the major and flexibility to add areas of specialization
- full general-education course work in the humanities and social sciences
- flexibility to become eligible for most graduate and professional degree programs

Bachelor of Science in Biotechnology (BSB)
Degree Requirements

Area I English Composition and Communication Skills See the School of Science requirements under “Undergraduate Programs” in this bulletin.
Written Communication (6 cr.)
- ENG-W131 English Composition I (3 cr.)
- TCM 32000 Written Communication in Science and Industry (3 cr.)

Speech Communication (3 cr.)
- COMM-R110 Fundamentals of Speech Communication (3 cr.)

Area II Foreign Language No foreign language is required for a Bachelor of Science degree. However, knowledge of a foreign language is strongly recommended for any student planning to attend graduate school.

Area IIIA Humanities, Social Sciences, and Comparative World Cultures
- HIST-H114 Western Civilization II or HIST-H109 Perspectives on the World: 1800-Present
- List H course: Choose one course (3cr.) from this list. The list of course choices is located under the School of Science requirements “Undergraduate Programs” in this bulletin.
- List S course: Choose one course (3cr.) from this list. The list of course choices is located under the School of Science requirements “Undergraduate Programs” in this bulletin.

Area IIIB Junior/Senior Integrator The Junior/Senior Integrator requirement is suspended indefinitely as a School-level requirement. No junior/senior integrator course is required for biotechnology majors.

Area IIIC Physical and Biological Sciences

Chemistry
Two semesters of Principles of Chemistry with laboratory:
- CHEM-C105 / CHEM-C125 Principles of Chemistry I with lab
- CHEM-C106 / CHEM-C126 Principles of Chemistry II with lab

One semester of organic chemistry lecture:
- CHEM-C341 Organic Chemistry Lecture I

Physics One semester of basic physics
- PHYS-P201 or PHYS 15200

Area IIID Mathematical Sciences
Course work through two semesters of calculus:
- MATH 23100 / MATH 23200 or
- MATH 22100 / MATH 22200 or
- MATH 16500 / MATH 16600

The starting point for mathematics courses should be worked out with a departmental advisor based on the math placement test and/or background of the student.

The computer science requirement may be satisfied with CSCI-N207.

A statistics course is required: STAT 30100.

Area IV Biotechnology Requirements

Required courses
- BIOL-K101 Concepts of Biology I (5 cr.)
- BIOL-K483 Biological Chemistry (3 cr.) or CHEM-C484 Biomolecules and Catabolism (3 cr.)

Specialized courses in Biotechnology to be taken at IvyTech. Biotechnology internship may be taken at IUPUI. See departmental advisor for additional information.

Elective courses in area of specialization

Electives chosen with advisor to total at least 40 credits

No grade below a C- will be accepted toward the degree program in any biology, biotechnology and chemistry course.

To receive credit for a laboratory for which there is an accompanying pre- or corequisite lecture, the lecture must be completed with a minimum grade of C-.
Department of Chemistry and Chemical Biology
IUPUI
Science Building, LD 326
402 N. Blackford Street
Indianapolis, IN 46202-3274
Phone: (317) 274-6872, fax: (317) 274-4701
www.chem.iupui.edu

Faculty

• Professors Long, Malik (Chancellor’s Professor), O’Donnell (Chancellor’s Professor), Siegel (Chair), Varma-Nelson (Executive Director of the Center for Teaching and Learning)
• Professors Emeriti Boschmann (Associate Vice President), Dubin, Fife, Schultz, Sunderwirth (IUPU Columbus)
• Associate Professors McLeish, Minto, Muhoberac, Naumann
• Associate Professor and Associate Dean Emeritus Fricke
• Associate Professors Emeriti Cutshall, Nurok, Wyma
• Assistant Professors Deo, Ge, Goodpaster, Lei Li, Oh
• Assistant Scientists Blacklock, Dria
• Research Professors Boyd, Scott
• Lecturer/Coordinator of Student Services Nguyen
• Senior Lecturer Anliker
• Lecturers Ammerman, Zhao, Zhu

Departmental Academic Advisors Contact the department for assignment to an advisor.

Chemistry is the science that studies substances, both natural and synthetic, and their compositions, properties, transformations, and interactions with external forces.

The Department of Chemistry and Chemical Biology offers the Bachelor of Arts (B.A.) degree, the Bachelor of Science in Chemistry (B.S.) degree with a chemistry option and a biological chemistry option, and the Master of Science (M.S.) degree. All degrees carry the general requirements of the School of Science, which are described elsewhere in this bulletin. An undergraduate minor in chemistry is also offered. The Bachelor of Science degree carries certification by the American Chemical Society (ACS) Committee on Professional Training. The Master of Science degree has both a thesis and a nonthesis option. An Industrial Co-op Program is also offered for the Master of Science degree. Qualified students may be authorized to pursue the Doctor of Philosophy (Ph.D.) degree in chemistry in the areas of analytical, biological, inorganic, organic, and physical chemistry. Contact the Department for details or visit the Web site chem.iupui.edu.

To enter the undergraduate curriculum in chemistry, a student should have completed a minimum of two years of algebra, one semester of trigonometry, one year each of chemistry and physics, and two years of a modern foreign language. The choice of a particular degree program in chemistry and the selection of courses for that degree must be made in consultation with a departmental advisor.

Courses for Nonmajors

Students in programs that require only one semester of chemistry should take CHEM-C100, CHEM-C101, or CHEM-C110, depending on their specific degree program. CHEM-C100 and CHEM-C110 are both nonmathematical introductions to chemistry, while CHEM-C101 requires one semester of high school algebra. Students in programs that require two semesters of chemistry take either CHEM-C101 / CHEM-C121 with CHEM-C110 / CHEM-C115 or the CHEM-C105 / CHEM-C125 with CHEM-C106 / CHEM-C126 sequence. (See specific program for degree major.) The CHEM-C105 / CHEM-C125 with CHEM-C106 / CHEM-C126 sequence is designed for students pursuing advanced work in scientific fields (e.g., biology, chemistry, geology, medicine, and physics). Students with an insufficient background in high school chemistry for CHEM-C105 should take CHEM-C101 as a preparatory course. Credit for CHEM-C101 cannot count toward the total credit hours needed for graduation if either of the following courses is taken: CHEM-C105, CHEM-C106. Completion of CHEM-C101 does not qualify a student for admission to CHEM-C106.

Academic Advising in Chemistry

Academic success requires frequent and regular interaction between students and faculty in the classroom as well as outside it. In keeping with this departmental philosophy, chemistry majors are required to meet with their advisor at least once a year, preferably in the first half of the fall semester. Students who do not meet with their advisor by October 21 will not be permitted to register for the following spring semester until their advisor approves their registration.

Course Prerequisites

The Department enforces all prerequisites for chemistry courses as indicated in the course listing of this bulletin. For course equivalency of prerequisites, consult the instructor.

Minor in Chemistry

The undergraduate minor in chemistry requires a minimum of 20 credit hours of chemistry courses. The following courses are required: CHEM-C105, CHEM-C125 with CHEM-C106, CHEM-C128, CHEM-C341, CHEM-C342, CHEM-C343, and either CHEM-C310 or CHEM-C360. MATH 22200 and PHYS-P202 are prerequisites for CHEM-C360. For other requirements see the School of Science requirements under “Undergraduate Programs, Minors” elsewhere in this bulletin.

• Bachelor of Arts Preprofessional Chemistry Major
• Bachelor of Science in Chemistry, Professional Chemistry Major, A.C.S. Certified
• Graduate Programs (M.S. and Ph.D. Degrees)

Bachelor of Science in Chemistry, Professional Chemistry Major, A.C.S. Certified

This degree is for students who plan to be professional chemists or who plan to pursue graduate studies in chemistry. It carries certification by the Committee on Professional Training of the American Chemical Society.
Two options are available: a chemistry option and a biological chemistry option.

Degree Requirements (Chemistry Option)

First-Year Experience Course Beginning freshmen and transfer students with fewer than 18 credit hours are required to take SCI-I120 Windows on Science (1 cr.) or an equivalent first-year experience course.

Area I English Composition and Communication Skills See the School of Science requirements under “Undergraduate Programs” in this bulletin. The second semester of English composition may be satisfied only by ENG-W132 (or ENG-W150), ENG-W231, ENG-W233, ENG-W290, TCM 22000, or TCM 32000.

Area II Foreign Language No foreign language proficiency is required for a Bachelor of Science degree.

Area IIIA Humanities, Social Sciences, and Comparative World Cultures
- List C One course from a list of comparative world culture courses (3 cr.). See the School of Science requirements under “Undergraduate Programs” in this bulletin.
- List S One course from a list of social science courses (3 cr.). See the School of Science requirements under “Undergraduate Programs” in this bulletin.
- List H One course from a list of humanities courses (3 cr.). See the School of Science requirements under “Undergraduate Programs” in this bulletin.
- List C One course from a list of comparative world culture courses (3 cr.). See the School of Science requirements under “Undergraduate Programs” in this bulletin.

Area IIIB Junior/Senior Integrator The Junior/Senior Integrator requirement is suspended indefinitely as a School-level requirement. No junior/senior integrator course is required for chemistry majors.

Area IIIC Physical and Biological Sciences
- PHYS 15200, PHYS 25100, BIOL-K101, and BIOL-K103.
- Beyond the introductory level, an additional 3 credit hours of biology should be chosen from one of the following: BIOL-K324 Cell Biology, BIOL-K356 Microbiology, or BIOL-K322 Genetics and Molecular Biology.

Area IIID Mathematical Sciences MATH 16500, MATH 16600, MATH 17100, and MATH 26100. One computer science course is also required.

Note: Computer Science CSCI-N100 level courses and CPT/CIT 10600 do not count for any credit toward any degree in the School of Science. Also, CSCI-N241 and CSCI-N299 do not count in Area IIID, but may count as a general elective.

Area IV Chemistry Concentration Requirements
- CHEM-C105, CHEM-C125, CHEM-C106, CHEM-C126, CHEM-C310, CHEM-C311, CHEM-C341, CHEM-C342, CHEM-C343, CHEM-C344, CHEM-C361, CHEM-C362, CHEM-C363, CHEM-C410, CHEM-C411, CHEM-C430, CHEM-C435, CHEM-C484, CHEM-C494 and CHEM-C495. A total of 46 credit hours of chemistry courses are required. The Department of Chemistry requires a minimum grade of C in all chemistry courses (C- grades are unacceptable).

In addition to the above requirements, a minimum of 6 additional credit hours of advanced chemical elective courses is required. Courses may be chosen from the following: CHEM-C409 (3 cr. min.), CHEM-C309, CHEM-C371, CHEM-C372, CHEM-C485, CHEM-C486 or any graduate-level chemistry course (permission required).

Degree Requirements (Biological Chemistry Option)

First-Year Experience Course Beginning freshmen and transfer students with fewer than 18 credit hours are required to take SCI-I120 Windows on Science (1 cr.) or an equivalent first-year experience course.

Area I English Composition and Communication Skills See the School of Science requirements under “Undergraduate Programs” in this bulletin. The second semester of English composition may be satisfied only by ENG-W132 (or ENG-W150), ENG-W231, ENG-W233, ENG-W290, TCM 22000, or TCM 32000.

Area II Foreign Language No foreign language proficiency is required for a Bachelor of Science degree.

Area IIIA Humanities, Social Sciences, and Comparative World Cultures See the School of Science requirements under “Undergraduate Programs” in this bulletin.

Area IIIB Junior/Senior Integrator The Junior/Senior Integrator requirement is suspended indefinitely as a School-level requirement. No junior/senior integrator course is required for chemistry majors.

Area IIIC Physical and Biological Sciences
- PHYS 15200, PHYS 25100, BIOL-K101, and BIOL-K103.
- Beyond the introductory level, an additional 3 credit hours of biology should be chosen from one of the following: BIOL-K324 Cell Biology, BIOL-K356 Microbiology, or BIOL-K322 Genetics and Molecular Biology.

Area IIID Mathematical Sciences MATH 16500, MATH 16600, MATH 17100, and MATH 26100. One computer science course is also required.

Note: Computer Science CSCI-N100 level courses and CPT/CIT 10600 do not count for any credit toward any degree in the School of Science. Also, CSCI-N241 and CSCI-N299 do not count in Area IIID, but may count as a general elective.

Area IV Chemistry Concentration Requirements
- CHEM-C105, CHEM-C125, CHEM-C106, CHEM-C126, CHEM-C310, CHEM-C311, CHEM-C341, CHEM-C342, CHEM-C343, CHEM-C344, CHEM-C361, CHEM-C362, CHEM-C363, CHEM-C410, CHEM-C411, CHEM-C430, CHEM-C435, CHEM-C484, CHEM-C485, CHEM-C486, CHEM-C494, and CHEM-C495. A total of 46 credit hours of chemistry courses are required. The Department requires a minimum grade of C in all chemistry courses (C- grades are unacceptable).

In addition to the above requirements, a minimum of 6 additional credit hours of advanced chemical elective courses is required. Courses may be chosen from the following: CHEM-C409 (3 cr. min.), CHEM-C309, CHEM-C371, CHEM-C372, CHEM-C485, CHEM-C486, certain CHEM-C496 topics courses (permission required), any graduate-level chemistry course (permission required), BIOL-54000, or BIOL-54800 (permission required).
Bachelor of Science: Sample Program, Chemistry
Option- Professional Chemistry Major- A.C.S. Certified
(124 cr. required)

Freshman Year
First Semester
- CHEM-C105 Principles of Chemistry I 3 cr.
- CHEM-C125 Experimental Chemistry I 2 cr.
- MATH 16500 Analytic Geometry and Calculus I 4 cr.
- MATH 17100 Multidimensional Mathematics 3 cr.
- ENG-W131 Elementary Composition I 3 cr.
- SCI-I120 Windows on Science 1 cr.

16 credits

Second Semester
- CHEM-C106 Principles of Chemistry II 3 cr.
- CHEM-C126 Experimental Chemistry II 2 cr.
- MATH 16600 Analytic Geometry and Calculus II 4 cr.
- PHYS 15200 Mechanics 4 cr.
- Second composition course 3 cr.

16 credits

Sophomore Year
Third Semester
- CHEM-C341 Organic Chemistry I 3 cr.
- CHEM-C343 Organic Chemistry Laboratory I 2 cr.
- MATH 26100 Multivariate Calculus 4 cr.
- PHYS 25100 Mechanics 5 cr.
- COMM-R110 Fundamentals of Speech Communication 3 cr.

17 credits

Fourth Semester
- CHEM-C342 Organic Chemistry II 3 cr.
- CHEM-C344 Organic Chemistry Laboratory II 2 cr.
- CSCI course 3 cr.
- HIST-H114 History of Western Civilization II or HIST-H109 Perspectives on the World: 1800 to Present 3 cr.
- Elective 3 cr.

Junior Year
Fifth Semester
- CHEM-C310 Analytical Chemistry 2 cr.
- CHEM-C311 Analytical Chemistry Laboratory 1 cr.
- CHEM-C362 Physical Chemistry of Molecules 4 cr.
- Elective 3 cr.
- Humanities-List H 3 cr.
- Physical or biological science elective 3 cr.

16 credits

Sixth Semester
- CHEM-C361 Physical Chemistry of Bulk Matter 3 cr.
- CHEM-C363 Experimental Physical Chemistry 2 cr.
- CHEM-C494 Introduction to Capstone 1 cr.
- Physical or biological science elective 3 cr.
- Comparative World Cultures-List C 3 cr.
- Social Sciences-List S 3 cr.

15 credits

Senior Year
Seventh Semester
- CHEM-C410 Principles of Chemical Instrumentation 3 cr.
- CHEM-C411 Principles of Chemical Instrumentation Laboratory 2 cr.
- CHEM-C484 Biomolecules and Catabolism 3 cr.
- Advanced chemical elective 3 cr.
- Electives 5 cr.

16 credits

Eighth Semester
- CHEM-C430 Inorganic Chemistry 3 cr.
- CHEM-C435 Inorganic Chemistry Laboratory 1 cr.
- CHEM-C495 Capstone in Chemistry 1 cr.
- Advanced Chemical elective 3 cr.
- Electives 6 cr.
- CAND 99100 Candidate for Graduation 0 cr.

14 credits
Bachelor of Science: Sample Program Biological Chemistry Option-Professional Chemistry Major-A.C.S. Certified (124 cr. required)

Freshman Year

First Semester
- CHEM-C105 Principles of Chemistry I 3 cr.
- CHEM-C125 Experimental Chemistry I 2 cr.
- MATH 16500 Analytic Geometry and Calculus I 4 cr.
- MATH 17100 Multidimensional Mathematics 3 cr.
- ENG-W131 Elementary Composition I 3 cr.
- SCI-I120 Windows on Science 1 cr.
- **Total Credits:** 16 cr.

Second Semester
- CHEM-C106 Principles of Chemistry II 3 cr.
- CHEM-C126 Experimental Chemistry II 2 cr.
- MATH 16600 Analytic Geometry and Calculus II 4 cr.
- PHYS 15200 Mechanics 4 cr.
- Second composition course 3 cr.
- **Total Credits:** 16 cr.

Sophomore Year

Third Semester
- CHEM-C341 Organic Chemistry I 3 cr.
- CHEM-C343 Organic Chemistry Laboratory I 2 cr.
- MATH 26100 Multivariate Calculus 4 cr.
- PHYS 25100 Heat, Electricity, and Optics 5 cr.
- COMM-R110 Fundamentals of Speech Communication 3 cr.
- **Total Credits:** 17 cr.

Fourth Semester
- CHEM-C342 Organic Chemistry II 3 cr.
- CHEM-C344 Organic Chemistry Laboratory II 2 cr.
- BIOL-K101 Concepts of Biology I 5 cr.
- CSCI elective 3 cr.
- **Total Credits:** 14 cr.

Junior Year

Fifth Semester
- CHEM-C310 Analytical Chemistry 2 cr.
- CHEM-C311 Analytical Chemistry Laboratory 1 cr.
- CHEM-C362 Physical Chemistry of Molecules 4 cr.
- BIOL-K103 Concepts of Biology II 5 cr.
- Humanities-List H 3 cr.
- **Total Credits:** 15 cr.

Sixth Semester
- CHEM-C361 Physical Chemistry of Bulk Matter 3 cr.
- CHEM-C363 Experimental Physical Chemistry 2 cr.
- CHEM-C494 Introduction to Capstone 1 cr.
- Advanced biology course 3 cr.
- Comparative World Cultures-List C 3 cr.
- Social Sciences-List S 3 cr.
- **Total Credits:** 15 cr.

Senior Year

Seventh Semester
- CHEM-C484 Biomolecules and Catabolism 3 cr.
- Advanced chemical elective 3 cr.
- Electives 10 cr.
- **Total Credits:** 16 cr.

Eighth Semester
- CHEM-C430 Inorganic Chemistry 3 cr.
- CHEM-C435 Inorganic Chemistry Laboratory 1 cr.
- CHEM-C485 Biosynthesis and Physiology 3 cr.
- CHEM-C486 Biological Chemistry Laboratory 2 cr.
- CHEM-C495 Capstone in Chemistry 1 cr.
- Advanced chemical elective 3 cr.
- CAND 99100 Candidate for Graduation 0 cr.
- **Total Credits:** 13 cr.
The Department will not grant credit for a course when considerable duplication of course content may occur with another course taken. In general, credit will be allowed for the higher-level course, but not for the lower-level course. The following listings are considered to be duplications (lower-level courses listed first):

- CHEM-C360 and CHEM-C361
- MATH 22100 / MATH 22200 and MATH 16500 / MATH 16600
- PHYS-P201 / PHYS-P202 or PHYS 21800 / PHYS 21900 and PHYS 15200 / PHYS 25100
- PHYS 10000 or PHYS 20000 and PHYS-P201, PHYS 21800, or PHYS 15200

For example, if a student has earned credit in MATH 16500 / MATH 16600, the student will receive no credit for MATH 22100 / MATH 22200, even if earned previously. On occasion, a student who initially enrolled in the preprofessional B.A. in chemistry program decides to transfer to the B.S. in Chemistry program, having already taken one or more of the above-listed lower-level courses. The following policies will apply:

- If a student has a minimum grade of B (B- or lower is unacceptable) in CHEM-C360 and approval of the departmental chairperson, credit will be granted for CHEM-C361 and the student may proceed to CHEM-C362.
- If a student has earned credit for the MATH 22100 / MATH 22200 sequence, the student will be placed in MATH 16600. If the student passes MATH 16600, the MATH 16500 / MATH 16600 requirement will be considered fulfilled. Credit will be granted for MATH 22100 and MATH 16600 only (8 credit hours). If the student does not pass MATH 16600, the student must start with MATH 16500.
- If a student has earned credit for MATH 22100 only, the student must take the MATH 16500 / MATH 16600 sequence, and no credit will be allowed for MATH 22100.
- If a student has earned credit for the PHYS-P201 / PHYS-P202 or PHYS 21800 / PHYS 21900 sequence, the student will be placed in PHYS 25100. If the student passes PHYS 25100, the PHYS 15200 / PHYS 25100 requirement will be considered fulfilled. Credit will be granted for PHYS-P201 and PHYS 25100 only (10 credit hours). If the student does not pass PHYS 25100, the student must start with PHYS 15200.
- If a student has earned credit for PHYS-P201 or PHYS 21800 only, the student must take the PHYS 15200 / PHYS 25100 sequence, and no credit will be allowed for PHYS-P201 or PHYS 21800.

On occasion, a student who initially enrolled in the B.S. in Chemistry program decides to transfer to the preprofessional B.A. in Chemistry program, having already taken one or more of the above-listed higher-level courses. A higher-level course will always substitute for a lower-level course to satisfy the requirement.

Bachelor of Arts Preprofessional Chemistry Major

For students who require a knowledge of chemistry as a basis for work in other fields such as business, dentistry, environmental science and policy, law, medicine, or other allied health fields. Recommended for premedical and predentistry students.

Degree Requirements

First-Year Experience Course Beginning freshmen and transfer students with fewer than 18 credit hours are required to take SCI-I120 Windows on Science (1 cr.) or an equivalent first-year experience course.

Area I English Composition and Communication Skills See the School of Science requirements under “Undergraduate Programs” in this bulletin. The second semester of English composition may be satisfied only by ENG-W132 (or ENG-W150), ENG-W231, ENG-W233, ENG-W290, TCM 22000, or TCM 32000.

Area II Foreign Language See the School of Science requirements under “Undergraduate Programs” in this bulletin.

Area IIIA Humanities, Social Sciences, and Comparative World Cultures

- HIST-H114 Western Civilization II (3 cr.) or HIST-H109 Perspectives on the World: 1800-Present (3 cr.)
- List H One course from a list of humanities courses (3 cr.). See the School of Science requirements under “Undergraduate Programs” in this bulletin.
- List S One course from a list of social science courses (3 cr.). See the School of Science requirements under “Undergraduate Programs” in this bulletin.
- List C One course from a list of comparative world culture courses (3 cr.). See the School of Science requirements under “Undergraduate Programs” in this bulletin.

Area IIIB Junior/Senior Integrator The Junior/Senior Integrator requirement is suspended indefinitely as a School-level requirement. No junior/senior integrator course is required for chemistry majors.

Area IIIC Physical and Biological Sciences PHYS-P201 and PHYS-P202 (recommended PHYS 15200 and PHYS 25100). Also, at least two additional courses outside chemistry having a laboratory component, which may be chosen from, for example, biology, geology, or physics.

Area IIID Mathematical Sciences MATH 22100 and MATH 22200 (recommended MATH 16500 and MATH 16600). One computer science course is also required.

Note: Computer Science CSCI-N100 level courses and CPT/CIT 10600 do not count for any credit toward any degree in the School of Science. Also, CSCI-N241 and CSCI-N299 do not count in Area IIID, but may count as a general elective.

Area IV Chemistry Concentration Requirements CHEM-C105, CHEM-C125, CHEM-C106, CHEM-C126, CHEM-C310, CHEM-C311, CHEM-C341, CHEM-C342, CHEM-C343, CHEM-C344, CHEM-C360 (recommended CHEM-C361), CHEM-C410, CHEM-C411 and CHEM-C494. Recommended CHEM-C484. A total of 32 credit hours of chemistry courses are required. The Department
requires a minimum grade of C in all chemistry courses (C- grades are unacceptable).

Bachelor of Arts Preprofessional Chemistry Major Sample Program (124 cr. required):

<table>
<thead>
<tr>
<th>Freshman Year</th>
<th>16 credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Semester</td>
<td></td>
</tr>
<tr>
<td>CHEM-C105 Principles of Chemistry I</td>
<td>3</td>
</tr>
<tr>
<td>CHEM-C125 Experimental Chemistry I</td>
<td>2</td>
</tr>
<tr>
<td>MATH 22100 Calculus for Technology I</td>
<td>3</td>
</tr>
<tr>
<td>ENG-W131 Elementary Composition I</td>
<td>3</td>
</tr>
<tr>
<td>HIST-H114 History of Western Civilization II or HIST-H109 Perspectives on the World: 1800 to Present</td>
<td>3</td>
</tr>
<tr>
<td>SCI-I120 Windows on Science</td>
<td>2</td>
</tr>
<tr>
<td>Second Semester</td>
<td></td>
</tr>
<tr>
<td>CHEM-C106 Principles of Chemistry II</td>
<td>3</td>
</tr>
<tr>
<td>CHEM-C126 Experimental Chemistry II</td>
<td>2</td>
</tr>
<tr>
<td>MATH 22200 Calculus for Technology II</td>
<td>3</td>
</tr>
<tr>
<td>PHYS-P201 General Physics I</td>
<td>5</td>
</tr>
<tr>
<td>Second composition course</td>
<td>3</td>
</tr>
<tr>
<td>Second Semester</td>
<td>16 credits</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sophomore Year</th>
<th>16 credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Third Semester</td>
<td></td>
</tr>
<tr>
<td>CHEM-C341 Organic Chemistry I</td>
<td>3</td>
</tr>
<tr>
<td>CHEM-C343 Organic Chemistry Laboratory I</td>
<td>2</td>
</tr>
<tr>
<td>PHYS-P202 General Physics II</td>
<td>5</td>
</tr>
<tr>
<td>COMM-R110 Fundamentals of Speech Communication</td>
<td>3</td>
</tr>
<tr>
<td>Foreign Language I</td>
<td>3</td>
</tr>
<tr>
<td>Fourth Semester</td>
<td></td>
</tr>
<tr>
<td>CHEM-C342 Organic Chemistry II</td>
<td>3</td>
</tr>
<tr>
<td>CHEM-C344 Organic Chemistry Laboratory II</td>
<td>2</td>
</tr>
<tr>
<td>CSCI course</td>
<td>3</td>
</tr>
<tr>
<td>Physical or biological science elective</td>
<td>5</td>
</tr>
<tr>
<td>Foreign Language II</td>
<td>3</td>
</tr>
</tbody>
</table>

Junior Year

<table>
<thead>
<tr>
<th>16 credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fifth Semester</td>
</tr>
<tr>
<td>CHEM-C310 Analytical Chemistry</td>
</tr>
<tr>
<td>CHEM-C311 Analytical Chemistry Laboratory</td>
</tr>
<tr>
<td>Physical or biological science elective</td>
</tr>
<tr>
<td>Foreign language III</td>
</tr>
<tr>
<td>Humanities-List H</td>
</tr>
<tr>
<td>Sixth Semester</td>
</tr>
<tr>
<td>CHEM-C360 Elementary Physical Chemistry</td>
</tr>
<tr>
<td>CHEM-C494 Introduction to Capstone</td>
</tr>
<tr>
<td>Comparative World Cultures-List C</td>
</tr>
<tr>
<td>Social Sciences-List S</td>
</tr>
<tr>
<td>Electives</td>
</tr>
</tbody>
</table>

Senior Year

<table>
<thead>
<tr>
<th>16 credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seventh Semester</td>
</tr>
<tr>
<td>CHEM-C410 Principles of Chemical Instrumentation</td>
</tr>
<tr>
<td>CHEM-C411 Principles of Chemical Instrumentation Lab-</td>
</tr>
<tr>
<td>Electives</td>
</tr>
<tr>
<td>Eighth Semester</td>
</tr>
<tr>
<td>Electives</td>
</tr>
<tr>
<td>CAND 99100 Candidate for Graduation</td>
</tr>
<tr>
<td>Graduate Programs (M.S. and Ph.D. Degrees)</td>
</tr>
<tr>
<td>Admission Requirements</td>
</tr>
</tbody>
</table>

The prospective student should have a bachelor’s degree from an accredited institution, show promise of ability to engage in advanced work, and have adequate preparation, at least 35 credit hours of chemistry, broadly representative of the fields of the discipline, in a chemistry curriculum. The GRE subject exam in chemistry is strongly recommended.

Incoming students with an undergraduate grade point average (GPA) of 3.0 or higher (on a 4.0 scale) will automatically be recommended for admission as regular graduate students. Those with a GPA below 3.0 will be admitted as temporary graduate students with the
provision that a 3.0 average must be achieved in the first three graduate courses (or 9 credit hours) if they are to be admitted as regular graduate students.

Application for Admission

Inquiries concerning the application process can be made directly to the Department by writing to Graduate Admissions; Department of Chemistry and Chemical Biology, IUPUI, 402 N. Blackford Street, Indianapolis, IN 46202-3272; phone (317) 274-6876; www.chem.iupui.edu. Applications for full-time study should be completed by March for the following Fall semester to ensure complete consideration for fellowships and other financial support (see “Graduate Program Financial Aid” in this section). Applications for part-time graduate admission may be submitted at any time.

Temporary graduate students who wish to enroll in courses, though not necessarily in a degree program, should contact the IUPUI Graduate Office, Union Building, Room UN-207, 620 Union Drive, Indianapolis, IN 46202-5167; phone (317) 274-1577. Students should be aware that no more than 12 credit hours earned as a nondegree student may be counted toward a degree program.

Transfer Credit

The Department will accept by transfer a maximum of 6 hours of graduate credit, in excess of undergraduate degree requirements, from approved institutions.

Graduate Program Financial Aid

All full-time thesis graduate students receive support stipends through teaching assistantships, research assistantships, departmental fellowships, university fellowships, or through the Industrial Co-op Program. Full-time students receive fee remissions; students with assistantships and fellowships are also eligible for health insurance. Consult the graduate advisor for current funding levels.

Master of Science Program

The M.S. program in chemistry, which awards a Purdue University degree, requires 30 credit hours of study beyond the baccalaureate level. It is designed for students seeking careers as professional chemists. Graduates of the program often choose industrial positions, but others enter Ph.D. programs in chemistry or related areas. Graduates have been placed in positions throughout the United States and abroad.

General Degree Options and Requirements

Specific area requirements (core courses) apply for course work. Courses from three of the following areas must be taken: analytical, biological, inorganic, organic, and physical. Typically, students take three courses in their primary area and two courses outside of it to meet these requirements.

The M.S. degree can be earned through any of three different options: the thesis option, the Industrial Co-op Program, and the nonthesis option.

Thesis Option This traditional full-time program requires 20 hours of course work and 10 hours of thesis research.

The research activity culminates in the completion and defense of a thesis. This option is available to full- or part-time students.

Industrial Co-op Program This full-time program has the same requirements as the thesis option, but it includes industrial work experience in the Indianapolis area. The program is described in detail in the following section, “Master of Science Industrial Co-op Program.”

Nonthesis Option The nonthesis option requires 30 hours of course work alone. Because actual research experience is essential in an advanced chemistry program, this option is recommended for part-time students only. Students in this option are usually employed full time and are already engaged in research activity as part of their employment. However, nonthesis students may still enroll in a limited amount of research study that applies to the degree requirements (usually through CHEM 59900).

Master of Science #Industrial Coop Program

Although most chemists seek careers in industry upon completion of their educational goals, few have had industrial experience or the opportunity to develop an appreciation for the types of problems presented in the industrial setting. The Industrial Co-op Program in Indianapolis is designed to provide industrial experience and to offer an alternative approach to career preparation. Most graduates leave with a strong, research-based M.S. degree plus meaningful work-study experience commensurate with graduate-level training. Students may also enter the Ph.D. program and participate in the co-op program for the first two years of their residency.

The M.S. Industrial Co-op Program requires 24 months of full-time study. The first semester consists of intensive course work, interviews with personnel from several local industrial laboratories, and familiarization with faculty research interests. In the second and subsequent semesters, the student continues course work and engages in parallel work experience and academic experience, consisting of 20 hours per week at an industrial lab and 20 hours per week in an academic lab. This work experience is commensurate with the student’s background and interests and is an important part of the overall training program. The faculty thesis advisor and the industrial supervisor serve together to monitor each student’s progress in the program.

Most students who enter the co-op program have sound academic backgrounds and some research experience, and they desire industrial experience and an opportunity to pursue graduate studies in chemistry.

Ph.D. Program

The Ph.D. program is a full-time, thesis-based research program. This program provides a substantially larger research component than that of the M.S. degree and requires original and significant research contributions by the student. As a result, the Ph.D. student is qualified for employment where the ability to design, develop, and complete a research program is expected.

The program is part of the Purdue University system-wide doctoral program in chemistry, and, as such, identical
requirements apply to all campuses participating in the program.

To establish candidacy, students must pass five written ‘cumulative’ examination questions within their first four semesters and an oral examination before the end of their fifth semester of graduate study. The oral examination will include a discussion of the student’s research and defense of an original research proposal that is different from the student’s thesis research.

Course requirements include a core of three courses in the student’s major division plus three additional courses outside the major division. A number of additional courses may be recommended that cover material appropriate to the written part of the preliminary examination.

Joint M.D.-Ph.D. Program

The Department participates in the joint M.D.-Ph.D. program with the Indiana University School of Medicine. In this program, students concurrently earn an Indiana University M.D. degree and Purdue University Ph.D. degree in chemistry. Students take courses in both chemistry and medicine, with several courses simultaneously satisfying both degree requirements.

Eligible students must be admitted separately to the School of Medicine and the Department of Chemistry and Chemical Biology. Once admission to each is approved, students, together with advisors from medicine and chemistry, plan a tentative course outline for a concurrent program. Graduate and teaching assistantships or fellowships are arranged primarily through the Department of Chemistry and Chemical Biology.

Medical Biophysics Ph.D. Program

In cooperation with departments in the Indiana University School of Medicine and the Purdue University School of Science, this interdisciplinary program leads to an Indiana University Ph.D. degree in biophysics. The program is designed to give talented graduate students the skills required of the next generation of biologically oriented scientists. The program combines a core of courses in molecular and cellular biophysics with flexible electives and a seminar program. The training is oriented primarily toward faculty-directed research with focus points at the boundaries of the traditional disciplines of physics, chemistry, and biology. Prospective students should contact the director of graduate programs in the chemistry department for further information.

Biomedical Engineering Ph.D. and Master’s Program

Biomedical engineering is a rapidly emerging interdisciplinary field combining engineering, chemistry, biology, and medicine. The curriculum involves mathematics, engineering, and classical and medical sciences. The doctoral program is a joint effort between the Biomedical Engineering Programs at IUPUI and Purdue University, West Lafayette. In this case, students apply to the West Lafayette campus and can take courses and do research at IUPUI. Students for the master’s program apply to the Biomedical Engineering Program at IUPUI.

Department of Computer and Information Science

IUPUI
Engineering, Science and Technology Building, SL 280
723 W. Michigan Street
Indianapolis, IN 46202-5132
Phone: (317) 274-9727; fax: (317) 274-9742
www.cs.iupui.edu

Academic Advising Appointments First year students should contact Andy Harris or Joshua Morrison. All other students should contact their assigned advisor.

- **Professor** Fang (Chair), Palakal, Raje
- **Professor and Dean Emeritus** Yovits
- **Emeritus Faculty** Olson
- **Associate Professors** Baker, Durresi, Liang, Mukhopadhyay, Tuceryan, Zheng, Zou
- **Assistant Professors** Chen, Dunder, Hill, Xia
- **Lecturers** Acheson, Harris, M. Roberts
- **Adjunct Professors** Mahouli, L. Shen, Wu, Y. Zhou

The department offers Purdue University Bachelor of Science (B.S.), Graduate Certificates, and Master of Science (M.S.) degrees. It also offers a Certificate in Applied Computer Science. Students interested in research may arrange to pursue a Doctor of Philosophy (Ph.D.) degree through the Purdue University Graduate School. The programs of study emphasize the basic principles of computing and information processing, which include the creation, representation, display, storage, transformation, and transmission of information, as well as the software to accomplish these tasks. Because computers are used in all segments of society, the theory and practice of computer and information science are pervasive and the field is, therefore, interdisciplinary. It is also young and dynamic, as evidenced by the growth of the computer industry, so the curriculum itself evolves rapidly.

Minor in Computer and Information Science

The undergraduate minor in computer and information science requires at least 20 credit hours in computer science courses, including CSCI 23000, 24000, 34000, 36200, and two CSCI elective courses chosen from selected N300-N400 and 300-400 level courses. Course prerequisites must be fulfilled prior to enrollment in CSCI courses.

A minimum GPA of 2.5 must be maintained in these courses. At least 9 credit hours of the minor must be taken at IUPUI.

Students who wish to pursue a minor in computer and information science must consult with a department advisor, who can be reached at (317) 274-9727. They must also file a formal application. Students should consult an advisor in the department before their final semester regarding minor completion.

- Bachelor of Science
- Certificate in Applied Computer Science
- Graduate programs
Bachelor of Science

Students completing the undergraduate degree in computer and information science will have acquired a fundamental understanding of computing, information processing, and information communication. The department’s graduates serve in a variety of programming, software engineering, database administration, systems analysis, management, and research positions.

Degree Requirements

NOTE: These degree requirements are effective for students admitted beginning in the Fall of 2010.

See the School of Science requirements under “Undergraduate Programs” in this bulletin for the general and area degree requirements. Computer science majors are admitted only provisionally to the program until they have completed MATH 16500 and CSCI 23000 and 24000 with a grade point average of 2.7 or higher for the three courses. Please note that computer and information science courses below CSCI 23000 or CSCI-N305, mathematics courses below MATH 16500, and statistics courses below STAT 33000 are not credited toward the degree. Furthermore, the School of Science will not accept certain university courses for the computer science degree program. The Bachelor of Science degree program in computer science requires a minimum of 124 credit hours.

First-Year Experience Course Beginning freshmen and transfer students with fewer than 18 credit hours are required to take SCI-I120 Windows on Science (1 cr.) or an equivalent first-year experience course.

Area I English Composition and Communication Skills (9 cr.) See the School of Science requirements under “Undergraduate Programs” in this bulletin for details.

• ENG-W131 Elementary Composition I
• COMM-R110 Fundamentals of Speech Communication

The second semester of English composition must be satisfied with:

• TCM 32000 Written Communication in Science and Industry

Area II Foreign Language No foreign language proficiency is required for a Bachelor of Science degree.

Area IIIA Humanities, Social Sciences, and Comparative World Cultures (12 cr.) The information about the IIIA requirements in the School of Science part of this bulletin lists courses that may be used to satisfy the requirements below. Students should consult a departmental advisor before registering for these courses.

• HIST-H114 Western Civilization II (3 cr.) or HIST-H109 Perspectives on the World: 1800-Present (3 cr.)
• List H One course from a list of humanities courses (3 cr.).
• List S One course from a list of social science courses (3 cr.).
• List C One course from a list of comparative world culture courses (3 cr.).

Area IIIB Junior/Senior Integrator (3 cr.) The Junior/Senior Integrator requirement is suspended indefinitely.

The three credit hours formerly required for this Area may be replaced with whatever course you and your advisor believe is the best to prepare you for your future career or graduate school. It may be a general elective, another course within the major, or one of the Integrator courses that appear on the current list. Please contact your academic advisor with questions regarding this requirement suspension.

Area IIIC Physical and Biological Sciences The Department of Computer and Information Science requires all computer science majors to take PHYS 15200 and three other physical science courses chosen from the areas of biology, chemistry, geology, and physics, or from certain courses in engineering. Each course that counts as one of the physical science required courses must have a lecture component and be at least 3 credit hours. Courses that may not be used to fulfill Area IIIC requirements include: BIOL-N100, BIOL-N107, BIOL-N120, BIOL-N200; CHEM-C100, CHEM-C101, CHEM-C102, CHEM-C110; PHYS 01000, PHYS 10000, PHYS 14000, PHYS 20000, PHYS 21800, PHYS 21900, PHYS-P201, PHYS-P202; AST-A130; GEOL-G107, GEOL-G115, GEOL-G130, GEOL-G132, GEOL-G135; and all agriculture and geography courses. Consult a departmental academic advisor concerning the acceptability of other courses. The following engineering courses may be applied toward Area IIIC requirements: ECE 20100, ECE 20200, and ECE 26600. Laboratory courses without a lecture component may be taken for credit, but do not count toward the four-course requirement.

Area IIID Mathematical Sciences Computer Science majors are required a minimum of 15 credit hours of mathematical sciences. A single grade of D or D+ is acceptable in this Area. Otherwise, all courses must be completed with a C- or higher. Five course requirements include MATH 16500, MATH 16600, MATH 17100, MATH 35100 or MATH 51100, STAT 35000 or STAT 41600 or STAT 51100.

Area IV Major Requirements Minimum requirements include 26 credit hours of core computer science courses and at least 33 additional hours of computer science and supporting course electives. Core courses are: CSCI 23000, CSCI 24000, CSCI 34000, CSCI 36200, CSCI 40200, CSCI 40300, CSCI 48400, and CSCI 49500. Students who do not maintain a minimum GPA of 2.5 in MATH 17100, and in CSCI 23000, CSCI 24000, CSCI 34000, and CSCI 36200 will not be permitted to continue as departmental majors.

Computer and Information Science Electives Students are encouraged to focus their required electives in such areas as databases and data mining, software engineering, game and graphics, networking, and security. Students choose a minimum of 11 courses from among the list of computer science and supporting course electives. No more than 3 courses can be chosen from the select list of N-series courses; a minimum of 6 courses must be CSCI 40000-level or above, and no more than 2 courses can be chosen from a recommended list of courses outside of computer science.

• CSCI-N-Series and 300 level Electives—Choose no more than three
• CSCI 30000 Systems Programming
• CSCI 35500 Introduction to Programming Languages
• CSCI-N311 Advanced Database Programming, Oracle
• CSCI-N321 System and Network Administration
• CSCI-N335 Advanced Programming, Visual Basic
• CSCI-N342 Server Side Web Development
• CSCI-N343 Object-Oriented Programming for the Web
• CSCI-N345 Advanced Programming, Java
• CSCI-N351 Introduction to Multimedia Programming
• CSCI-N355 Introduction to Virtual Reality
• CSCI-N361 Software Engineering for Applied Computer Science
• CSCI-N371 Introduction to Interactive Design
• CSCI-N375 Advanced Interactive Design
• INFO-I300 Human Computer Interaction
• INFO-I310 Multimedia Arts: History, Criticism, and Technology
• INFO-I320 Distributed Systems and Collaborative Comp
• BUS-S302 Management Information Systems
• BUS-L203 Commercial Law I
• BUS-L303 Commercial Law II
• ECE 20400 Introduction Electrical and Electron Circuits
• ECE 36200 Microprocessor Systems and Interfacing
• ECE 47100 Embedded Systems
• STAT 51400 Design of Experiments

Bachelor of Science Sample Program (124 cr. required)

Freshman Year

First Semester
- CSCI 23000 Computing I 4
- MATH 16500 Analytic Geometry and Calculus I 4
- ENG W131 Elementary Composition I 3
- List H 3
- 18

Second Semester
- CSCI 24000 Computing II 4
- CSCI 34000 Discrete Computational Structures 3
- MATH 16600 Analytic Geometry and Calculus II 4
- ENG W131 Elementary Composition I 3
- List H 3
- Unrestricted elective (1) 3
- SCI-I120 Windows on Science 1
- 18

Sophomore Year

Third Semester
- CSCI elective (1) 3
Certificate in Applied Computer Science

MATH 17100 3
Multidimensional Mathematics
CSCI 36200 Data Structures 3
PHYS 15200 (Sci 2) 4
Mechanics
COMM-R110 Fundamentals of Speech Communication 3

Fourth Semester
CSCI elective (2) 3
CSCI elective (3) 3
CSCI elective (4) 3
List C 3
MATH 35100 Elementary Linear Algebra 3
Unrestricted elective (2) 3

Junior Year
Fifth Semester
CSCI 40200 Architecture of Computers 3
CSCI elective (5) 3
STAT 35000, 41600, or 51100 3
Science Elective (2) *3-5
List S 3
*15-17

Sixth Semester
CSCI 40300 Intro to Operating Systems 3
Required Computational Elective *3-4
CSCI elective (6) 3
Unrestricted elective (3) 3
Science elective (4) *3-5
*15-18

Senior Year
Seventh Semester
CSCI elective (7) 3
CSCI elective (8) 3
CSCI 48400 Theory of Computation 3
TCM 32000 Written Communication in Science and Industry 3
Unrestricted elective (4) 3

Eighth Semester
CSCI elective (9) 3
CSCI elective (10) 3
CSCI elective (11) 3
CSCI 49500 Explorations in Applied Computing 3
Unrestricted elective (5) 3
CAND 99100 Candidate for Graduation 3

*15-17

NOTE: Three to six (3-6) unrestricted (free) electives are required to earn 124 credit hours depending on the physical science courses chosen by the student.

Certificate in Applied Computer Science

The certificate program introduces computer science principles, develops practical skills in market-driven software applications, and prepares students to be successful with emerging technologies. The program is designed to supplement and enhance a primary degree program. It serves current IUPUI students and returning adults who are interested in gaining knowledge and skills in computing applications.

Those who earn the certificate will have demonstrated that they have the core competencies necessary for entry-level positions in information technology. They will have the ability to solve complex problems, design and implement algorithms, apply computer science theory to practical problems, adapt to technological change and to develop software solutions.

Admission Requirements

• A cumulative GPA of at least 2.0 and enrollment or successful completion (no grade below C–) of MATH-M118 Finite Mathematics or higher or PHIL-P162 Logic or PHIL-P265 Introduction to Symbolic Logic

Students must declare their intent to earn this certificate before completing the core requirements (9 credit hours) described below. No more than 9 credit hours earned before to admission to the program will be accepted toward the certificate requirements.

Program Requirements

Students are required to successfully complete 18 credit hours (six courses) to earn the certificate. Three courses are core requirements and three courses are advanced electives. Core requirements must be completed before enrolling in the advanced electives. No individual grade below a C– is acceptable. At least 9 credit hours in the certificate program must be taken in the Department of Computer and Information Science. A GPA of at least 2.0 is required for the complete certificate program.

Required Core CSCI Courses (9 credit hours):

• CSCI-N241 Fundamentals of Web Development
• CSCI-N301 Fundamental Computer Science Concepts
• CSCI-N361 Fundamental of Software Project Management
Advanced Electives (9 credit hours):
In addition to the three core courses, students must successfully complete three other N-series courses that complete Tier 1, Tier 2, and elective requirements.

To enroll in this certificate program, students must be formally admitted by the Office of Undergraduate Admissions on the IUPUI campus. For currently enrolled (admitted) IUPUI students, an online application is available at http://www.cs.iupui.edu/form/certificate/. Credit may be given for applicable courses taken at other colleges or universities.

Graduate programs
Master of Science

This program leads to a Master of Science degree from Purdue University. Many courses are offered in the late afternoon or evening to accommodate working students.

The Department offers three options for Master of Science students: Thesis, Project, and Course Only. Each option requires 30 completed credit hours. Thesis students complete a research project that counts for 6 or 9 credit hours of the 30 required credits. Project students complete a project, usually of a more practical nature related to their work or academic interests, counting for 3 or 6 of the 30 required credits. Course Only option students take 30 credit hours of course work, and select an area or areas of concentration. No thesis or project work is required.

Application for Admission

Submit applications for admission to the graduate program directly to the Department of Computer and Information Science by May 1 for the following Fall semester and September 15 for the following Spring semester. To be considered for departmental graduate assistant positions, all application materials must be received by January 15. Financial support is generally not available for Spring admission. Apply early because it may take up to six months to complete the application process.

Students interested in advanced study or students who are required to complete preparatory courses and are waiting on application processing may take courses as graduate nondegree students. However, no more than 12 graduate credit hours earned as a nondegree student may be counted toward a graduate degree program.

See the department’s Web site (www.cs.iupui.edu) for additional information on requirements and application deadlines. For guidelines and online applications, follow the link to the IUPUI Graduate Office on the department’s Web site.

General Admission Requirements

The applicant to the graduate program must have a four-year bachelor’s degree or equivalent. Students with three-year degrees may be required to complete additional course work in order to be eligible for admission.

The applicant’s record should demonstrate strong individual accomplishments and recommendations from independent references and exhibit outstanding achievement as indicated by the grade point average for each degree over his or her entire academic record. An applicant is expected to have a GPA of at least 3.0 on a scale of 4.0.

The Graduate Record Exam (GRE) General Test is optional for admission, but required to be eligible for financial aid. Those submitting GRE General Test scores are encouraged to submit Computer Science Subject Test scores.

All applicants should have a background in the following core areas of computer science:

- software development experience in a high-level language
- data structures and algorithms
- systems (operating systems, compilers, and programming languages)
- theory (discrete math and theory of computation)
- hardware (computer architecture)

In addition, applicants should have a strong background in mathematics, including calculus, linear algebra, and numerical computations.

All applicants whose native language is not English must submit a Test of English as a Foreign Language (TOEFL) score of at least 550 on the paper-based test, or 250 on the computer-based, or 77 on the Internet Based Test (IBT), or have International English Language Testing System (IELTS) band score of 6.5.

Provisional Admission

Those students who do not satisfy the admission requirements may request provisional admission only to the graduate program if they satisfy the following requirements:

- Possess a bachelor’s degree with a cumulative GPA of 3.0 on a 4.0 scale
- have taken MATH 16500 or equivalent experience or credit
- have taken CSCI 24000 or equivalent experience or credit

If provisional admission to the graduate program in computer science is granted, the student will be required to satisfy the stipulations of the admission, which may include satisfactorily completing one or more courses, before admission without provisions is granted.

Degree Requirements

To receive the Master of Science degree, the applicant must be admitted as a graduate student without provisions and complete 30 semester credit hours of study in CSCI courses numbered 500 or above, at least 6 credit hours of which must be from the following core courses:

- CSCI 50300 Operating Systems
- CSCI 50400 Concepts in Computer Organization
- CSCI 56500 Programming Languages
- CSCI 58000 Algorithm Design, Analysis, and Implementation

Each student is required to submit to the graduate committee for approval an initial plan of study during the first year in the program. This is prepared in consultation with the faculty advisor. Before the semester of expected graduation, the student’s formal plan of study must
be submitted to, and accepted by, Purdue University Graduate School. Each student must register in CAND 99100 for 0 credits during the final semester before graduation.

Credit for Courses from Outside the Department

Credit for graduate courses taken at other institutions may be transferred with the approval of the graduate committee and the Graduate School if the courses have not been used for other degree requirements. Transfer credits are normally limited to 6 credit hours and are restricted to courses in which the grade is B or higher. Up to 6 credit hours of graduate credit from a closely related discipline may be used to substitute for the elective courses, subject to approval by the department before enrollment.

Assessment

The student's graduate examination committee will examine the student's project or thesis and general proficiency in computer science. Grades of A and B are expected; up to 6 credit hours of C may be included, provided an overall GPA of 3.0 (B) is maintained. Other grades are unacceptable.

Programs of Study

The department offers three programs of study within its M.S. program: the Research Program, the Applied Program, and the Course Only option.

Research Program

The objective of the Research Program is to help students develop a general knowledge of computer science, depth in a specific area, and an ability to do independent research. The student learns research techniques by working in close cooperation with a faculty member while doing the thesis research. In addition to the two core courses and 6 to 9 credit hours of thesis work, the student completes a sufficient number of electives from the department's graduate level courses to satisfy the requirement of 30 credits hours total.

Applied Program

The objective of the Applied Program is to develop skills and knowledge of the computer science fundamentals and an ability to apply these to practical problems. In addition to the two core courses, it requires at least two courses in a specialization, 3 to 6 credits of work in the M.S. Project course, CSCI 69500, and a sufficient number of electives from the department's graduate courses to complete the requirement of 30 credits hours. The course work is designed to provide breadth of knowledge to the professional as well as specialized knowledge in the areas that the project will require. The project normally involves at least two semesters of intensive work on an application of the course material to a problem of practical importance. This might be a project from the student's work environment, internship, or a faculty member's work. Its objective is generally more immediately practical than the thesis in the Research Program. The student carries out the project under the supervision of a faculty member.

The Applied Program offers a menu of courses from which the individual selects one or more specializations to prepare for the proposed project. To define a specialization, the graduate advisor and student identify in the plan of study two or more courses that provide depth in a cohesive theme.

Course Only Option

The Course Only option is meant for students who desire practical knowledge and skills in a range of specializations in computer science. It offers a menu of courses from which the individual selects one or more specializations to define a concentration area. The program provides both depth and breadth of knowledge in the discipline, and is ideal for students who are not planning careers exclusively in research.

Doctor of Philosophy

Students interested in research in certain areas and who qualify may be admitted to pursue a Ph.D. degree. Information on the general nature of the program appears in the “Graduate Programs” section of the School of Science part of this bulletin. Consult the department’s Web page (www.cs.iupui.edu) for more specific information on how this might be arranged.

Department of Earth Sciences

IUPUI Engineering, Science, and Technology Building, SL 118 723 W. Michigan Street Indianapolis, IN 46202-5132 (317) 274-7484; fax (317) 274-7966

www.geology.iupui.edu

- **Professors** Barth, Filippelli (Chair)
- **Professor Emeritus** Mirsky
- **Associate Professors** Licht, Pachut, Rosenberg, Tedesco
- **Assistant Professors** Jacinthe, Lin Li, Vidon
- **Lecturer** Swope
- **Adjunct Professors** Brothers, Kelson, Latimer, Muridell, Perry, Preer, Prezbindowski, Rogers, X. Wang, J. Wilson, Wittman
- **Departmental Academic Advisors** Barth, Licht

Geology is the study of the planet Earth: the materials of which it is made, the processes that act upon these materials, and the history of the planet and life forms since its origin. Geology considers the physical forces acting on the earth, the chemistry of its constituent materials, and the biology of its past inhabitants. Geology also includes the study of the interrelationships in the modern environment of humans and geological phenomena and focuses on such important concerns as how our global climate is changing and how that change will affect human activities.

The Department of Earth Sciences offers the Bachelor of Arts (B.A.) and Bachelor of Science (B.S.) degrees in geology from Indiana University. These programs prepare students for graduate studies and for a variety of careers with emphasis on investigation of the environment by federal and state agencies, industries, and consulting companies. The programs allow flexibility to accommodate the needs and interests of all students. Selection of a particular program should be made in consultation with a departmental advisor.
The Department of Earth Sciences offers graduate study leading to the Master of Science (M.S.) degree granted by Indiana University. The M.S. program offers both thesis and non-thesis options.

Faculty and students of the Department of Earth Sciences are actively engaged in basic and applied research. Specific research areas include petrology, geochemistry, glacial geology, paleoclimate, biomineralization, sedimentology, history of geology, and paleontology.

Minor in Geology

(Granted by Indiana University)

The undergraduate minor in geology requires 18 credit hours, with an overall grade point average of 2.0 (C) and with no grade less than a C-, distributed as follows:

1. Students must complete the following five courses that total 12 credit hours: GEOL-G110 (3 cr.), GEOL-G120 (1 cr.), GEOL-G130 (1 cr.), GEOL-G209 (3 cr.) or GEOL-G335 (4 cr.), and GEOL-G221 (4 cr.) or GEOL-G306 (4 cr.).
2. Students must complete an additional 6 credit hours minimum, including two of the following courses: GEOL-G222 (4 cr.), GEOL-G304 (3 cr.), GEOL-G334 (4 cr.), GEOL-G406 (3 cr.), GEOL-G415 (3 cr.), GEOL-G430 (4 cr.), and GEOL-G451 (3 cr.).

- Bachelor of Arts
- Bachelor of Science
- Graduate Programs

- At least 9 credit hours of the minor must be taken at IUPUI. In addition, recommended courses include one year of college chemistry and at least one course in college algebra.

Bachelor of Arts

(Granted by Indiana University)

Degree Requirements

First-Year Experience Course Beginning freshmen and transfer students with less than 18 credit hours are required to take SCI-I120 Windows on Science (1 cr.) or an equivalent first-year experience course.

Area I English Composition and Communication Skills See the School of Science requirements under “Undergraduate Programs” in this bulletin. The second semester of English composition may be satisfied by ENG-W132 or ENG-W231. GEOL-G205 may partially satisfy the writing requirement in Area I, but the 3 credit hours cannot then also be counted as part of the geology credit hours required in Area IV.

Area II Foreign Language First-year proficiency in a modern foreign language is required for the Bachelor of Arts degree program. See the School of Science requirements under “Undergraduate Programs” in this bulletin.

Area IIIA Humanities, Social Sciences, and Comparative World Cultures See the School of Science requirements under “Undergraduate Programs” in this bulletin.

Area IIIB Junior/Senior Integrator See the School of Science requirements under “Undergraduate Programs” in this bulletin.

Area IIIC Physical and Biological Sciences See the School of Science requirements under “Undergraduate Programs” in this bulletin, but all four courses must include laboratories; at least two of the four courses must include CHEM-C105 / CHEM-C125, CHEM-C106 / CHEM-C126; and at least one of the four courses must be in biological sciences. No grade below C- will be accepted in any of these courses.

Area IIID Mathematical Sciences MATH 15300 / MATH 15400 or MATH 15900 and CSCI-N207 or another CSCI course approved by the Department of Earth Sciences. No grade below C- will be accepted in any of these courses.

Note: Computer Science CSCI-N100 level courses and CPT/CIT 10600 do not count for credit toward any degree in the School of Science. Also, CSCI-N241 and CSCI-N299 do not count in Area IIID, but may count as an elective.

Area IV Geology Concentration Requirements 33 credit hours of geology, including GEOL-G110, GEOL-G120, GEOL-G205, GEOL-G209, GEOL-G221 or GEOL-G306, GEOL-G334 and five 300-level or higher geology courses. GEOL-G222 may substitute for one of the 300-level or higher geology elective courses. Other 100-level courses, GEOL-G300 and GEOL-G307 do not count toward the geology concentration of 33 credit hours, but may be applied as electives toward the university-required total of 122 credit hours. No grade below C- will be accepted in any of these courses.

Other Requirements

See the School of Science requirements under Undergraduate Programs, Baccalaureate Degree, General Requirements in this bulletin. GEOL-G420, GEOL-G460, or GEOL-G495 may be used to satisfy the School of Science capstone requirement, upon approval by the Department of Earth Sciences.

Bachelor of Arts Sample Program (122 cr. required)

Freshman Year

<table>
<thead>
<tr>
<th>First Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEOL-G110 Physical Geology</td>
</tr>
<tr>
<td>GEOL-G120 Physical Geology Laboratory</td>
</tr>
<tr>
<td>CHEM-C105 Principles of Chemistry I</td>
</tr>
<tr>
<td>CHEM-C125 Experimental Chemistry I</td>
</tr>
<tr>
<td>ENG-W131 Elementary Composition I</td>
</tr>
<tr>
<td>MATH 15300 Algebra and Trigonometry I</td>
</tr>
<tr>
<td>SCI-I120 Windows on Science</td>
</tr>
</tbody>
</table>

16
Bachelor of Science
(Granted by Indiana University)

Degree Requirements

First-Year Experience Course Beginning freshmen and transfer students with less than 18 credit hours are required to take SCI-I120 Windows on Science (1 cr.) or an equivalent first-year experience course.

Area I English Composition and Communication
Skills See the School of Science requirements under “Undergraduate Programs” in this bulletin. The second semester of English composition may be satisfied by ENG-W132 or ENG-W231. GEOL-G205 may partially satisfy the writing requirement in Area I, but the 3 credit hours cannot then also be counted as part of the geology credit hours required in Area IV.

Area II Foreign Language No foreign language proficiency is required for a Bachelor of Science degree.

Area IIIA Humanities, Social Sciences, and Comparative World Cultures See the School of Science requirements under “Undergraduate Programs” in this bulletin.

Area IIIB Junior/Senior Integrator See the School of Science requirements under “Undergraduate Programs” in this bulletin.

Area IIIC Physical and Biological Sciences CHEM-C105 / CHEM-C125, CHEM-C106 / CHEM-C126; PHYS-P201 / PHYS-P202 or PHYS 15200 / PHYS 25100; and two courses in biological sciences, with the Department of Earth Sciences approval. No grade below C- will be accepted in any of these courses.

Area IIID Mathematical Sciences MATH 16500 / MATH 16600; CSCI-N207 or another CSCI course approved by the Department of Earth Sciences; and one course in statistics approved by the Department of Sciences. No grade below C- will be accepted in any of these courses.
Note: Computer Science CSCI-N100 level courses and CPT/CIT 10600 do not count for credit toward any degree in the School of Science. Also, CSCI-N241 and CSCI-N299 do not count in Area IIID, but may count as an elective.

Area IV Geology Concentration Requirements 36 credit hours of geology, including GEOL-G110, GEOL-G120, GEOL-G205, GEOL-G209, GEOL-G221 or GEOL-G306, GEOL-G334, five 300-level or higher geology courses, and a field camp of at least 3 credit hours approved by the Department of Earth Sciences. G222 may substitute for one of the 300-level or higher geology elective courses. Other 100-level courses, GEOL-G300, and GEOL-G307 do not count toward the geology concentration requirement of 36 credit hours, but may be applied as electives toward the university-required total of 122 credit hours. No grade below C- will be accepted in any of these courses.

General Two science courses at the 300 or 400 level approved by the Department of Earth Sciences. No grade below C- will be accepted in either of these courses.

Other Requirements See the School of Science requirements under Undergraduate Programs, Baccalaureate Degree, General Requirements in this bulletin. GEOL G420 satisfies the School of Science capstone requirement. The Department of Earth Sciences will accept 10 credit hours toward graduation outside the Schools of Science and Liberal Arts.

Bachelor of Science Sample Program (122 cr. required)

Freshman Year

First Semester
- GEOL-G110 Physical Geology 3
- GEOL-G120 Physical Geology Laboratory 1
- ENG-W131 Elementary Composition I 3
- MATH 16500 Analytic Geometry and Calculus I 4
- CSCI-N207 Data Analysis Using Spreadsheets 3
- SCI-I120 Windows on Science 1

 Total: 15

Second Semester
- COMM-R110 Fundamentals of Speech Communication 3
- CHEM-C105 Principles of Chemistry I 3
- CHEM-C125 Experimental Chemistry I 2
- MATH 16600 Analytic Geometry and Calculus II 4
- Second Composition Course 3

 Total: 15

Sophomore Year

Third Semester
- GEOL-G209 History of the Earth 3
- GEOL-G221 Introductory Mineralogy 4
- CHEM-C106 Principles of Chemistry II 3
- CHEM-C126 Experimental Chemistry II 2
- PHYS-P201 General Physics I 5

 Total: 17

Fourth Semester
- GEOL-G205 Reporting Skills in Geoscience 3
- GEOL-G222 Introductory Petrology 4
- BIOL-K101 Concepts of Biology I 5
- PHYS-P202 General Physics II 5

 Total: 17

Junior Year

Fifth Semester
- GEOL-G300/GEOL-G400 elective 4
- GEOL-G334 Principles of Sedimentation and Stratigraphy 4
- BIOL-K103 Concepts of Biology II 5
- HIST-H114 History of Western Civilization II 3

 Total: 16

Sixth Semester
- GEOL-G323 Structural Geology 4
- STAT 30100 Elementary Statistical Methods I 3
- 300-400-level Non-geology Science Elective 3
- Social Sciences List S 3
- Elective 3

 Total: 16

Senior Year

Seventh Semester
- GEOL-G400 level Electives 6
- Comparative World Cultures 3
- Humanities List C 3

 Total: 12
Graduate Programs

Master of Science

The Department of Earth Sciences graduate program leads to a Master of Science degree from Indiana University. The program is administered by a departmental graduate advisory committee, composed of the graduate advisor and two or more members of the graduate faculty.

Admission Requirements
Prospective students should have a bachelor’s degree in geology, including a summer field course, and a minimum of a B (3.0) average in geology courses. One year of chemistry and mathematics through college algebra and trigonometry are required. Individuals with a bachelor’s degree in another area of science are also encouraged to apply; the departmental graduate advisory committee will prescribe a plan of study to remove deficiencies. The Graduate Record Examination (GRE) General Test is required; the Subject Test in Geology is optional. Each student must submit three letters of recommendation.

Financial Aid
Admitted students may be appointed as research assistants or as teaching assistants in introductory geology courses. Several such assistantships are available each year. Assistantships include remission of tuition and fees.

Degree Requirements
Both thesis and non-thesis options are available. Both options require at least 18 credit hours of non-research course work in geology and at least 3 credit hours in courses approved for graduate credit from allied sciences, mathematics, or the environmental program of the School of Public and Environmental Affairs (SPEA). Up to 6 credit hours of 400-level courses approved for graduate credit may be counted toward the degree with the approval of the graduate advisor. The thesis option requires the completion of 30 credit hours, 6 of which are taken as GEOL-G810 Research (the thesis). The non-thesis option requires the completion of 36 credit hours, 3 of which consist of a research project taken as GEOL-G700 Geologic Problems. The departmental graduate committee must approve elective credits outside of the Department of Earth Sciences for both options.

Admitted students will be assigned a three-person advisory committee at the beginning of the first year of graduate study. The committee will prescribe a study program based on the interests of the student and the principal graduate advisor. Students must complete all degree requirements within six years of beginning the study program. A B (3.0) average or higher must be maintained. Students must maintain a B (3.0) average or higher, and no grade below C is acceptable.

Bachelor of Science/Master of Science Program

The B.S./M.S. program combines the undergraduate B.S. program with the M.S. program in geology, leading to the award of an Indiana University bachelor’s and master’s degree with completion of the M.S. thesis. The departmental graduate advisory committee administers the B.S./M.S. program.

Admission Requirements
Prospective students should have advanced standing in the undergraduate program. Students should apply to the program in early spring of the junior year. Students should submit GRE scores and three letters of recommendation. Application requires a minimum GPA of 3.0 and will be considered by the departmental graduate committee.

Degree Requirements
Course and thesis requirements are the same as those listed under the Master of Science program in this bulletin. Upon acceptance into the program, the student will prepare a research and course plan in consultation with a graduate academic advisory committee. Research reading and data collection begins in the summer prior to the senior year of undergraduate study, and will be completed the following summer. The fifth year of study is devoted to graduate course work and completion of the M.S. thesis.

Environmental Science Program

IUPUI
Engineering, Science, and Technology Building, SL 118
723 W. Michigan Street
Indianapolis, IN 46202-5132
Phone: (317) 274-7484; fax: (317) 274-7966
http://www.cee.iupui.edu/
http://www.geology.iupui.edu/bses/

Environmental Science is an interdisciplinary field of study that investigates questions related to the human population, natural resources, and environmental management. It includes the study of the interrelationships in the modern environment of humans and natural phenomena and focuses on important modern concerns, like how our global climate is changing and how that change may affect human activities, how to maintain and improve vital natural resources like drinking water, and how to manage and balance the quality of the environment in the face of improving the quality of life in the United States and abroad.

The Bachelor of Science in Environmental Science is an interdisciplinary degree within the School of Science that is offered in partnership with the School of Public and Environmental Affairs and the School of Liberal Arts. Additional environmental programs are offered in the Schools of Science, Public and Environmental Affairs, and Liberal Arts. The Department of Earth Sciences offers both the Bachelor of Arts and Bachelor of Science degrees in Geology with opportunities to study environmental problems. The School of Public and Environmental Affairs offers the Bachelor of Science in Public Health degree with a major in Environmental Science and Health.
The School of Liberal Arts offers the Bachelor of Arts degree in Geography and a variety of environmentally focused courses in various disciplines. See program listings in each school for additional information or speak with the program advisor for information about different environmental degrees.

Participating Faculty

- **Professors** Filippelli, Lindsey, McSwane, Ottensmen, Siegel
- **Associate Professors** Brothers, Dwyer, Licht, Ritchie, Tedesco, Wilson
- **Assistant Professors** Babbar-Sebens, Jacinthe, Johnston, Lin, Nelson, P. Vidon, Wang
- **Lecturers** Swope, E. Vidon
- **Adjunct Faculty** Cantwell, Holm, Magoun, Thompson
- **Program Director** Tedesco (Science, Earth Sciences)
- **Academic Advisors** Tedesco (Science, Earth Sciences), McSwane (SPEA), Wilson (Liberal Arts, Geography)

The Bachelor of Science of Environmental Science (B.S.E.S.) degree is awarded by Indiana University. This program prepares students for graduate studies and for a variety of careers with emphasis on investigation of the environment by federal and state agencies, industry, and consulting firms. The program allows flexibility to accommodate the needs and interests of all students. There are three Environmental Science Concentrations within the Bachelor of Science of Environmental Science Program. Selection of a particular concentration should be made in consultation with the program advisor.

Earth and Water Resources

Understanding interactions between land, soil, and water is critical to ensuring environmental quality. The Earth and Water Resources concentration provides students with a quantitative background in soils, hydrogeology, and biogeochemistry and an understanding of biological interactions, processes affecting soil and water resources, and advanced analytical techniques related to environmental quality assessments. Students can pursue detailed course work in either the Water or Earth options of this concentration and are prepared for continued advanced study or careers in government, industry, and environmental consulting.

Environmental Management

The Environmental Management concentration prepares students who wish to focus on the management of pollution in the air, land, and water. Students who complete this concentration have the theoretical foundation and applied skills needed to characterize hazards, track the fate and transport of pollutants, identify health and environmental effects of pollutants, and plan and manage programs to control environmental hazards. The required courses in the concentration focus on identification and solving multimedia problems in solid and hazardous waste, water quality and wastewater treatment, and air quality in the outdoors, inside homes, or in industrial workplaces. The options allow students to focus more specifically on the assessment of pollution, policy and planning, or occupational safety and health.

Students are prepared for careers in government, industry, and nonprofit agencies.

Environmental Remote Sensing and Spatial Analysis

Spatial information technologies provide important tools for measurement, analysis, and modeling of environmental systems and their dynamic interaction with human impacts. The Environmental Remote Sensing and Spatial Analysis concentration builds theoretical background and advanced knowledge in spatial analytical techniques using remote sensing (satellite and airborne sensors), geographic information system (GIS), and global positioning system (GPS) technologies. The concentration emphasizes integration of these technologies and their applications to problems of environmental modeling and analysis.

Research Areas

Faculty and students in the Departments of Earth Sciences (Science), Geography (Liberal Arts), and the School of Public and Environmental Affairs are actively engaged in basic and applied research. Specific research areas include geochemistry, hydrology, paleoclimate, sedimentology, biogeochemical cycles, soils, wetland restoration, water resource analysis, environmental remote sensing, land cover dynamics, urban ecosystems, human health and the environment, environmental and water resources planning, environmental health policy, public health, food science, and indoor air quality.

- Bachelor of Science in Environmental Science
- Centers and Programs

Centers and Programs

Center for Earth and Environmental Science

The Center for Earth and Environmental Science (CEES) at IUPUI is an interdisciplinary research and outreach center promoting science-based environmental stewardship through research, education, and public service. Research activities at CEES focus on applied environmental issues in five principle areas: water resource evaluation and watershed management; wetland and stream assessment and restoration; assessment of environmental constituents; environmental data management and visualization; and science education.

CEES has developed a network of experimental ecosystem restoration sites throughout central Indiana that are evaluating restoration strategies for riparian and wetland ecosystems and investigating watershed and water quality improvement strategies. CEES is developing an integrated network of remote environmental sensors that are actively monitoring water quality throughout area streams, reservoirs, riparian, and groundwater systems in an effort to support faculty and student research programs, improve our understanding of water resources and provide critical information to support environmental decision-making and water resource management. In partnership with the local water company, CEES is evaluating approaches to maintaining sustainable water resources for central Indiana. Through a long-term research and development program, CEES researchers are working to understand triggers of algal blooms in drinking water reservoirs, evaluate watershed best management approaches to reduce contaminants in drinking water reservoirs, and evaluate the effectiveness of alternative treatment technologies.

CEES strives to promote collaboration and scientific outreach activities through visiting scientists, graduate students, and undergraduate students. CEES also provides students with opportunities to work with companies, governmental agencies, and nonprofit organizations on collaborative projects. CEES offers a range of educational opportunities, including undergraduate and graduate research experiences, and provides students with the skills and knowledge necessary to succeed in their future careers.

CEES is committed to fostering a diverse and inclusive environment that values the contributions of all individuals. We strive to create an inclusive community that promotes equity and excellence in research, teaching, and education.

Participating Faculty

- **Professors** Filippelli, Lindsey, McSwane, Ottensmen, Siegel
- **Associate Professors** Brothers, Dwyer, Licht, Ritchie, Tedesco, Wilson
- **Assistant Professors** Babbar-Sebens, Jacinthe, Johnston, Lin, Nelson, P. Vidon, Wang
- **Lecturers** Swope, E. Vidon
- **Adjunct Faculty** Cantwell, Holm, Magoun, Thompson
- **Program Director** Tedesco (Science, Earth Sciences)
- **Academic Advisors** Tedesco (Science, Earth Sciences), McSwane (SPEA), Wilson (Liberal Arts, Geography)
source water, develop rapid assessment tools, and assess water supplies.

CEES works with community stakeholder groups to facilitate watershed management programs and provides research and infrastructure support to area environmental consulting firms, nonprofit agencies, and local, state and federal government agencies. CEES is also partnering with area schools, museums, parks and nature centers to develop and support authentic, high quality science education programs for students, and families, and provide instructional support and training for teachers. CEES public service programs are building capacity for service learning in the environmental sciences by providing opportunities for students and the community to engage in hands-on projects that address current environmental issues and improve natural areas in Central Indiana.

For more information, contact:

Center for Earth and Environmental Science
723 W. Michigan Street
Indianapolis, IN 46202
(317) 274-7154
www.cees.iupui.edu

The Center for Urban Policy and the Environment is a nonpartisan applied research organization in the School of Public and Environmental Affairs at IUPUI. The Center, founded in 1992, is now one of the largest of its kind in the country.

Any social and economic issues that affect quality of life are of interest to Center researchers. Some of the research topics have ranged from community safety and riverboat gambling to neighborhood empowerment, urban development and land use, the economic impact of the arts and sports, and drinking water and sewer infrastructures. With an award of general support from Lilly Endowment, Inc., Center scholars have conducted ongoing studies on Central Indiana. These investigations have helped policy makers understand how investments by households, businesses, governments, and nonprofits have influenced the Central Indiana region.

Center scholars, staff, and graduate student interns typically form project teams and work in partnership with local governments, nonprofit organizations, and private businesses. Over the years, the Center has worked with more than 150 clients and partners. These include the city of Indianapolis, the Indiana Port Commission, Indianapolis-Marion County Public Library, Indiana Gaming Commission, Indiana General Assembly and Office of the Governor, Indianapolis Museum of Art, Indianapolis Neighborhood Housing Partnership, Indiana Land Resources Council, and the Ford Foundation.

For more information, contact:

Center for Urban Policy and the Environment
School of Public and Environmental Affairs
334 N. Senate Avenue, Suite 300
Indianapolis, IN 46204-1708
http://www.policyinstitute.iu.edu/urban/

Sustainable Campus Ecosystem Program

As a university institution within an urban environment, the IUPUI community has a unique and important responsibility to educate and encourage environmental stewardship. The Sustainable Campus Ecosystem Program is working to implement environmentally sustainable projects and policies for IUPUI through a consortium of faculty, staff, and students. The initiative focuses on a multi-tiered approach to environmental sustainability and includes the following aspects: education and outreach, green landscaping, waste reduction, energy conservation, transportation, and water resources. Participants will identify goals and objectives for achieving sustainable policies at IUPUI as well as initiate projects and participate in service learning and outreach events on campus and in the community.

For more information, contact:

Center for Earth and Environmental Science
723 W. Michigan Street
Indianapolis, IN 46202
(317) 274-7154
www.cees.iupui.edu

Student Organizations

Environmental Awareness League

The mission of the Environmental Awareness League (EAL) is “to promote awareness of environmental issues and to exchange the latest ideas and tools in order to better the future of environmental health.” The League promotes service activities (such as river clean-ups and recycling programs), sponsors social activities (such as the hiking, river rafting, IUPUI Carnival in the Courtyard, and IUPUI Student Activities and Volunteer Fair), and offers professional development and networking opportunities (guest speakers and tours to industrial plants).

Green IUPUI

Green IUPUI explores issues related to promoting a sustainable society, both at IUPUI and globally. Activities include educational outreach at events on campus and in the City of Indianapolis, as well as opportunities to study energy efficiency, ecological sustainability, and water, earth, and air quality.

Geology Club

The Geology Club organizes a number of activities related to learning about earth sciences, including trips to the field and to museums, and informal discussions with faculty on research topics and career possibilities. The Club provides an opportunity to meet and socialize with other students with interests in earth sciences.

Bachelor of Science in Environmental Science

(Granted by Indiana University)

Degree Requirements

First-Year Experience Course

Beginning freshmen and transfer students with fewer than 18 credit hours are required to take SCI-I120 Windows in Science (1 cr.) or an equivalent first-year experience course.
Area I English Composition and Communication Skills (9 cr.) See the School of Science requirements under “Undergraduate Programs” in this bulletin. The second semester of English composition may be satisfied by ENG-W132 or ENG-W231. GEOL-G205 may partially satisfy the writing requirement in Area I.

Area II Foreign Language No foreign language proficiency is required for a Bachelor of Science degree.

Area IIIA Humanities, Social Sciences, and Comparative World Cultures (12 cr.) See the School of Science requirements under “Undergraduate Programs” in this bulletin.

Area IIIB Junior/Senior Integrator (3 cr.) The Junior/Senior Integrator requirement is suspended indefinitely as a School-level requirement. No junior/senior integrator course is required for environmental science majors.

Area IIIC Physical and Biological Sciences (33 cr.) BIOL-K101 / BIOL-K103, CHEM-C105 / CHEM-C106, GEOL-G107, GEOL-G110 / GEOL-G120, PHYS-P201 / PHYS-P202. No grade below C- will be accepted in any of these courses.

Area IIID Mathematical Sciences (12 cr.) MATH 22100 / MATH 22200; CSCI-N207 or another course approved by the program advisor; and STAT 30100, SPEA-K300, or a course in statistics approved by the program advisor. No grade below C- will be accepted in any of these courses.

Area IV Major Core and Concentration Requirements Core Requirements Twenty-five (25) credit hours of environmental science core courses including:

- GEOL-G306 Earth Materials
- SPEA-H316 Environmental Science and Health
- SPEA-E326 Math in Environmental Sciences
- PHIL-P237 Environmental Ethics
- GEOG-G303 Weather and Climate or GEOL-G430 Principles of Hydrology
- BIOL-K341 Principles of Ecology and Evolution or GEOG-G307 Biogeography: Distribution of Life
- GEOG-G338 Geographic Information Science or GEOG-G336 Remote Sensing
- SPEA-H459 Environmental Science and Health Data Analysis or an approved field methods course

No grade below C- will be accepted in any of these courses.

Concentration Requirements Eighteen to nineteen (18 to 19) credit hours of courses within one of three Environmental Science concentrations. Students select one of the Environmental Science Concentrations – Earth and Water Resources, Environmental Management, or Environmental Remote Sensing and Spatial Analysis.

A. Earth and Water Resources Eighteen (18) credit hours, including:

- CHEM-C341 Organic Chemistry I
- GEOL-G431 Wetland Ecosystems
- GEOL-G486 Soil Biogeochemistry
- GEOL-G445 Applied Analytical Techniques in Geology (capstone requirement)

Water Resources option, take the following:

- GEOL-G451 Principles of Hydrogeology
- SPEA-E455 Limnology or SPEA-E410 Introduction to Environmental Toxicology

Earth Resources option, take the following:

- GEOL-G406 Introduction to Geochemistry
- BIOL-K356 Microbiology or SPEA-E410 Introduction to Environmental Toxicology

No grade below C- will be accepted in any of these courses in the Earth and Water Resources concentration.

B. Environmental Management Eighteen to nineteen (18-19) credit hours, including

Required Courses (4 courses):

- CHEM-C341 Organic Chemistry I (3 cr.)
- SPEA-E410 Introduction to Environmental Toxicology (3 cr.)
- SPEA-E423 Environmental Health Technology: Managing Water and Wastes (3 cr.)
- SPEA-E451 Air Pollution and Control (3 cr.)

Elective Courses (2 courses selected from the following list):

- SPEA-H416 Environmental Health Policy (meets capstone requirement) (3 cr.)
- SPEA-H433 Industrial Hygiene (3 cr.)
- SPEA-H460 Techniques in Environmental Science and Health (meets capstone requirement) (4 cr.)
- GEOG-G438 Advanced GIS (3 cr.)
- Other courses in Environmental Science and Health may be approved by a SPEA faculty advisor.

No grade below C- will be accepted in any of these courses in the Environmental Management concentration.

C. Environmental Remote Sensing and Spatial Analysis Eighteen (18) credit hours, including:

1. GEOG-G336 Introduction to Remote Sensing and Air Photo Interpretation or GEOG-G338 Introduction to Geographic Information Systems
2. GEOG-G337 Computer Cartography and Graphics or INFO-I400 Programming for Geographic Information Systems or GEOL-G546 Planetary Remote Sensing
3. Three courses chosen from:
 - GEOG-G436 Advanced Remote Sensing: Digital Imaging Processing
 - GEOG-G438 Advanced Geographic Information Systems
 - *GEOG-G442 Seminar in Remote Sensing
 - GEOG-G488 Applied Spatial Statistics
 - GEOL-G436 Geological Remote Sensing
4. GEOG-G439 Seminar in Geographic Information Systems (capstone requirement)
D. Other Requirements

See the School of Science requirements under “Undergraduate Programs, Baccalaureate Degree, General Requirements” in this bulletin.

- GEOL-G445 satisfies the School of Science capstone requirement for the Earth and Water Resources concentration.
- SPEA-H460 satisfies the School of Science capstone requirement for the Environmental Management concentration.
- SPEA-H416 satisfies the School of Science capstone requirement for the Environmental Management concentration.
- GEOG G439 satisfies the capstone requirement for the Environmental Remote Sensing and Spatial Analysis concentration.

Environmental Science Plans of Study

There is no single semester-by-semester plan of study for the B.S.E.S. degree because of the flexibility encouraged within the program and the three concentration options. However, one possible sequence of courses for each concentration is given below. Variations from these sample plans of study should be made in consultation with the program advisor.

Bachelor of Science Environmental Science Sample Program

Earth and Water Resources concentration (122 cr. required)

Degree Requirements

<table>
<thead>
<tr>
<th>Freshman Year</th>
<th>Second Composition Course</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Semester</td>
<td></td>
</tr>
<tr>
<td>GEOL-G110 Physical Geology</td>
<td>3</td>
</tr>
<tr>
<td>GEOL-G120 Physical Geology Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>CHEM-C105 Principles of Chemistry I</td>
<td>3</td>
</tr>
<tr>
<td>PHIL-P237 Environmental Ethics</td>
<td>3</td>
</tr>
<tr>
<td>ENG-W131 Elementary Composition I</td>
<td>3</td>
</tr>
<tr>
<td>MATH 22100 Calculus for Technology I</td>
<td>3</td>
</tr>
<tr>
<td>SCI-I120 Windows on Science</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Second Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM-C106 Principles of Chemistry II</td>
</tr>
<tr>
<td>GEOL-G107 Environmental Geology</td>
</tr>
<tr>
<td>MATH 22200 Calculus for Technology II</td>
</tr>
<tr>
<td>COMM-R110 Fundamentals of Speech Communication</td>
</tr>
</tbody>
</table>

Sophomore Year

Third Semester

GEOL-G306 Earth Materials	4
BIOL-K101 Concepts of Biology I	5
CSCI-N207 Data Analysis Using Spreadsheets	3
CHEM-C341 Organic Chemistry I	3
HIST-H114 History of Western Civilization II	3
	18

<table>
<thead>
<tr>
<th>Fourth Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL-K103 Concepts of Biology II</td>
</tr>
<tr>
<td>GEOG-G338 Introduction to Geographic Information Systems</td>
</tr>
<tr>
<td>SPEA-K300 Statistical Techniques</td>
</tr>
<tr>
<td>GEOL-G430 Principles of Hydrology</td>
</tr>
<tr>
<td>SPEA-H316 Environmental Science and Health</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Junior Year</th>
<th>Fifth Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS-P201 General Physics I</td>
<td>5</td>
</tr>
<tr>
<td>SPEA-E326 Math in Environmental Science</td>
<td>3</td>
</tr>
<tr>
<td>GEOL-G431 Wetland Ecosystems</td>
<td>3</td>
</tr>
<tr>
<td>Comparative World Cultures-List C</td>
<td>3</td>
</tr>
<tr>
<td>SPEA-H459 Environmental Science and Health Data Analysis</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sixth Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS-P202 General Physics II</td>
</tr>
<tr>
<td>Humanities-List H</td>
</tr>
<tr>
<td>GEOL-G486 Soil Biogeochemistry</td>
</tr>
<tr>
<td>GEOL-G451 Principles of Hydrogeology</td>
</tr>
<tr>
<td>Social Sciences-List S</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
Bachelor of Science in Environmental Science Sample Program

Environmental Management Concentration (122 cr. required)

Freshman Year

First Semester
- GEOL-G110 Physical Geology 3
- GEOL-G120 Physical Geology Laboratory 1
- CHEM-C106 Principles of Chemistry I 3
- PHIL-P237 Environmental Ethics 3
- ENG-W131 Elementary Composition I 3
- MATH 22100 Calculus for Technology II 3
- SCI-I120 Windows on Science 1

Second Semester
- CHEM-C106 Principles of Chemistry II 3
- GEOL-G107 Environmental Geology 3
- MATH 22200 Calculus for Technology II 3
- COMM-R110 Fundamentals of Speech Communication 3
- Second Composition Course 3

Sophomore Year

Third Semester
- GEOL-G306 Earth Materials 4
- BIOL-K101 Concepts of Biology I 5
- CSCI-N207 Data Analysis Using Spreadsheets 3
- CHEM-C341 Organic Chemistry I 3

Fourth Semester

- BIOL-K103 Concepts of Biology II 5
- GEOG-G338 Introduction to Geographic Information Systems 3
- SPEA-K300 Statistical Techniques 3
- GEOL-G430 Principles of Hydrology 3
- SPEA-H316 Environmental Science and Health 3

Junior Year

Fifth Semester
- PHYS-P201 General Physics I 5
- SPEA-E326 Math Environmental Science 3
- SPEA-E451 Air Pollution and Control 3
- Comparative World Cultures-List C 3
- SPEA-H459 Environmental Science and Health Data Analysis 1

Sixth Semester
- PHYS-P202 General Physics II 5
- Humanities-List H 3
- SPEA-E419 Introduction to Environmental Toxicology 3
- SPEA-E423 Environmental Health Technology: Managing Water and Wastes 3
- Social Sciences-List S 3

Eighth Semester

Eighth Semester
- Electives 8
- CAND 99100 Candidate for Graduation 0

Bachelor of Science Environmental Science Sample Program

Senior Year

Seventh Semester
- SPEA-E455 Limnology 3
- BIOL-K341 Principles of Ecology and Evolution 3
- GEOL-G445 Applied Analytical Techniques in Geology 3
- Electives 3

Eighth Semester
- Electives 8
- CAND 99100 Candidate for Graduation 0
Senior Year

Seventh Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL-K341</td>
<td>Principles of Ecology and Evolution</td>
<td>3</td>
</tr>
<tr>
<td>GEOG-G438</td>
<td>Advanced Geographic Information Systems or Elective</td>
<td>3</td>
</tr>
<tr>
<td>HIST-H114</td>
<td>History of Western Civilization II</td>
<td>3</td>
</tr>
<tr>
<td>Elective</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Eighth Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPEA-H416</td>
<td>Environmental Health Policy (capstone)</td>
<td>3</td>
</tr>
<tr>
<td>Electives</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>CAND 99100</td>
<td>Candidate for Graduation</td>
<td>0</td>
</tr>
</tbody>
</table>

Bachelor of Science Environmental Science Sample Program

Environmental Remote Sensing and Spatial Analysis Concentration (122 cr. required)

Freshman Year

First Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEOL-G110</td>
<td>Physical Geology</td>
<td>3</td>
</tr>
<tr>
<td>GEOL-G120</td>
<td>Physical Geology Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>CHEM-C105</td>
<td>Principles of Chemistry I</td>
<td>3</td>
</tr>
<tr>
<td>PHIL-P237</td>
<td>Environmental Ethics</td>
<td>3</td>
</tr>
<tr>
<td>ENG-W131</td>
<td>Elementary Composition I</td>
<td>3</td>
</tr>
<tr>
<td>MATH 22100</td>
<td>Calculus for Technology I</td>
<td>3</td>
</tr>
<tr>
<td>SCI-I120</td>
<td>Windows on Science</td>
<td>1</td>
</tr>
</tbody>
</table>

Second Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM-C106</td>
<td>Principles of Chemistry II</td>
<td>3</td>
</tr>
<tr>
<td>GEOL-G107</td>
<td>Environmental Geology</td>
<td>3</td>
</tr>
<tr>
<td>MATH 22200</td>
<td>Calculus for Technology II</td>
<td>3</td>
</tr>
<tr>
<td>COMM-R110</td>
<td>Fundamentals of Speech Communication</td>
<td>3</td>
</tr>
<tr>
<td>Second Composition Course</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Sophomore Year

Third Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEOL-G306</td>
<td>Earth Materials</td>
<td>4</td>
</tr>
<tr>
<td>BIOL-K101</td>
<td>Concepts of Biology I</td>
<td>5</td>
</tr>
<tr>
<td>CSCI-N207</td>
<td>Data Analysis Using Spreadsheets</td>
<td>3</td>
</tr>
<tr>
<td>CHEM-C341</td>
<td>Organic Chemistry I</td>
<td>3</td>
</tr>
<tr>
<td>HIST-H114</td>
<td>History of Western Civilization II</td>
<td>3</td>
</tr>
</tbody>
</table>

Fourth Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL-K103</td>
<td>Concepts of Biology II</td>
<td>5</td>
</tr>
<tr>
<td>GEOG-G338</td>
<td>Introduction to Geographic Information Systems</td>
<td>3</td>
</tr>
<tr>
<td>SPEA-K300</td>
<td>Statistical Techniques</td>
<td>33</td>
</tr>
<tr>
<td>GEOG-G303</td>
<td>Weather and Climate</td>
<td>3</td>
</tr>
<tr>
<td>SPEA-H316</td>
<td>Environmental Science and Health</td>
<td>3</td>
</tr>
</tbody>
</table>

Junior Year

Fifth Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS-P201</td>
<td>General Physics I</td>
<td>5</td>
</tr>
<tr>
<td>SPEA-E326</td>
<td>Math in Environmental Science</td>
<td>3</td>
</tr>
<tr>
<td>GEOG-G336</td>
<td>Introduction to Remote Sensing</td>
<td>3</td>
</tr>
<tr>
<td>SPEA-H459</td>
<td>Environmental Science and Health Data Analysis</td>
<td>3</td>
</tr>
<tr>
<td>Comparative World Cultures-List C</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Sixth Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS-P202</td>
<td>General Physics II</td>
<td>5</td>
</tr>
<tr>
<td>Humanities-List H</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>GEOG-G488</td>
<td>Applied Spatial Statistics</td>
<td>3</td>
</tr>
<tr>
<td>GEOG-G337</td>
<td>Computer Cartography and Graphics</td>
<td>3</td>
</tr>
<tr>
<td>Social Sciences-List S</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Senior Year

Seventh Semester
Forensic and Investigative Sciences Program

IUPUI
Science Building, LD 326
402 N. Blackford Street
Indianapolis, IN 46202-3274
Phone: (317) 274-6882; fax: (317) 274-4701
www.forensic.iupui.edu

- Professor Siegel (Program Director)
- Assistant Professor Goodpaster
- Lecturer Ammerman
- Program Academic Advisor Shea

Forensic science is the application of the methods of science to matters involving the public. In many cases this means the application of science in solving crimes. Forensic science is multidisciplinary; it involves chemistry, biology, physics, math, biochemistry, engineering, computer science, psychology, medicine, law, criminal justice, etc. Forensic scientists analyze evidence and testify in court. They may be called upon to attend some crime scenes, train police investigators and attorneys, and conduct research.

In the fall of 2004, IUPUI began the first forensic science degree program in Indiana. This program was developed by faculty from the School of Law, the School of Science, and the School of Public and Environmental Affairs (SPEA). Each school contributes to the FIS program by offering required and elective classes, and by mentoring students in the program. Completion of this program leads to the Bachelor of Science in Forensic and Investigative Sciences (FIS). All students take a core of science classes and university-required courses. Then each student chooses one concentration:
- Biology
- Chemistry

The baccalaureate program also includes courses in imaging and photography, law and forensic science (taught by law faculty), laboratory courses in forensic chemistry and biology, as well as an opportunity to complete either an internship at a crime laboratory or a research project with a member of faculty. Graduates of the program will be able to seek employment in crime labs, scientific industries, environmental agencies, and federal or local law enforcement.

Admission to the Major

There are specific credit, GPA, and course requirements for admission to the FIS program. These depend upon your status. Please contact the FIS Academic Advisor for more information by e-mail forsci@iupui.edu or phone 317-274-6882.

- Bachelor of Science
- Minor in Forensic and Investigative Sciences
- Graduate Program

Bachelor of Science

This degree is for students who plan to work in the criminal justice system as scientists in crime laboratories or other enforcement environments. Scientific areas include anthropology, biology, chemistry, environmental science, geology, and psychology. Other suitable careers include computer forensics, law, and criminal investigation.

Degree Requirements

See the School of Science requirements under “Undergraduate Programs” in this bulletin for additional restrictions.

First-Year Experience Course Beginning freshmen and transfer students with fewer than 18 credit hours are required to take SCI-I120 Windows on Science (1 cr.) or an equivalent first-year experience course.

Area I English Composition and Communication Skills (9 cr.)

Written Communication (6 cr.)
- ENG-W131 English Composition I
 - The second semester of English composition may be satisfied only by ENG-W132 (or ENG-W150), ENG-W231, or TCM 32000.
- Oral Communication (3 cr.)
 - COMM-R110 Fundamentals of Speech Communication

Area II Foreign Language

No foreign language proficiency is required for a Bachelor of Science degree.

Area IIIA Humanities, Social Sciences, and Comparative World Cultures (12 cr.)

- HIST H114 Western Civilization II or HIST-H109 Perspectives on the World: 1800-Present
- List H course: Choose one course (3cr.) from this list. The list of course choices is located under the School of Science requirements “Undergraduate Programs” in this bulletin.
• List S course: Choose one course (3 cr.) from this list. The list of course choices is located under the School of Science requirements “Undergraduate Programs” in this bulletin.
• List C course: Choose one course (3 cr.) from this list. The list of course choices is located under the School of Science requirements “Undergraduate Programs” in this bulletin.

Area IIIB Junior/Senior Integrator (3 cr.)
FIS 41500 Forensic Science and the Law (3 cr.)

Area IIIC Physical and Biological Sciences (20 cr.)
• Physics Two semesters of basic physics: PHYS-P201 General Physics I (5 cr.) and PHYS-P202 General Physics II (5 cr.)
• Chemistry Two semesters of introductory college chemistry with a laboratory: CHEM-C105 Principles of Chemistry I (3 cr.) / CHEM-C125 Experimental Chemistry I (2 cr.) and CHEM-C106 Principles of Chemistry II (3 cr.) / CHEM-C126 Experimental Chemistry II (2 cr.)

Area IIID Mathematical Sciences (9 cr.)
• Mathematics MATH 23100 Calculus for the Life Sciences I (3 cr.) and MATH 23200 Calculus for the Life Sciences II (3 cr.)
• Computer Science Choose one course from the following: CSCI-N201, CSCI-N207, CSCI-N211, or CSCI-N301 (all are 3 cr.)

Note: Computer Science CSCI-N100 level courses and CPT/CIT 10600 do not count for credit toward any degree in the School of Science. Also, CSCI-N241 and CSCI-N299 do not count in Area IIID but may count as a general elective.

Area IV Forensic and Investigative Sciences Major Concentration
A) Required forensic science courses in addition to those required for the concentration (14 cr.) All FIS courses applicable to the major must have a minimum grade of C.
• FIS 20500 Concepts of Forensic Science I (3 cr.)
• FIS 20600 Concepts of Forensic Science II (3 cr.)
• FIS 30500 Professional Issues in Forensic Science (3 cr.)
• FIS 49000 Capstone Experience (5 cr.) This is a required course that can be completed during any Summer, Fall, or Spring semester during/after the Junior year. Semester and method of completion will be determined on an individual basis. Please see your academic advisor for guidance.

B) Required biology courses (10 cr.)
• BIOL-K101 Concepts of Biology I (5 cr.)
• BIOL-K103 Concepts of Biology II (5 cr.)

C) Required chemistry courses beyond introductory chemistry (10 cr.)
• CHEM-C341 Organic Chemistry Lectures I (3 cr.)
• CHEM-C343 Organic Chemistry Laboratory I (2 cr.)
• CHEM-C342 Organic Chemistry Lectures II (3 cr.)
• CHEM-C344 Organic Chemistry Laboratory II (2 cr.)

D) Required criminal justice courses (3 cr.)
• SPEA-J101 The American Criminal Justice System (3 cr.)

E) Required statistics course (3 cr.)
• STAT 30100 Elementary Statistical Methods (3 cr.)

F) Concentrations

• Biology Concentration (24 cr.)
 • BIOL-K322 Genetics and Molecular Biology (3 cr.)
 • BIOL-K323 Genetics and Molecular Biology Lab (2 cr.)
 • BIOL-K338 Intro Immunology (3 cr.)
 • BIOL-K339 Immunology Laboratory (2 cr.)
 • BIOL-K483 Biological Chemistry (3 cr.)
 • BIOL-K484 Cellular Biochemistry (3 cr.)
 • FIS 40200 Forensic Biology I (Fall) (4 cr.)
 • FIS 40300 Forensic Biology II (Spring) (4 cr.)

• Chemistry Concentration (19 cr.)
 • CHEM-C310 Analytical Chemistry (Spring/Summer) (2 cr.)
 • CHEM-C311 Analytical Chemistry Lab (1 cr.)
 • CHEM-C360 Elementary Physical Chemistry 3 cr.)
 • CHEM-C410 Principles of Chemical Instrumentation (Fall) (3 cr.)
 • CHEM-C411 Prin of Chemical Instrumentation Lab (Fall) (2 cr.)
 • FIS 40100 Forensic Chemistry I (Fall) (4 cr.)
 • FIS 40400 Forensic Chemistry II (Spring) (4 cr.)
 • FIS 40600 Forensic Microscopy (3 cr.)

G) Advanced science courses, based on the concentration selected; refer to the lists below (12 cr. minimum)

• Biology Concentration advanced science elective course list
 • ANTH-B426 Human Osteology (3 cr.)
 • BIOL-K324 Cell Biology (Spring) (3 cr.)
 • BIOL-K325 Cell Biology Laboratory (Spring) (2 cr.)
 • BIOL-K356 Microbiology (Spring) (3 cr.)
 • BIOL-K357 Microbiology Laboratory (Spring) (2 cr.)
 • BIOL-N217 Human Physiology (5 cr.)
 • BIOL-N261 Human Anatomy (5 cr.)
 • CHEM-C310 Analytical Chemistry (Spring/Summer) (2 cr.)
 • CHEM-C311 Analytical Chemistry Lab (1 cr.)
 • CHEM-C360 Elementary Physical Chemistry 3 cr.)
 • CHEM-C410 Principles of Chemical Instrumentation (Fall) (3 cr.)
 • CHEM-C411 Prin of Chemical Instrumentation Lab (Fall) (2 cr.)
 • CHEM-C430 Inorganic Chemistry (Spring) (3 cr.)
 • CHEM-C435 Inorganic Chemistry Lab (Spring) (1 cr.)
• CHEM-C484 Biomolecules and Catabolism (Fall) (3 cr.)
• CHEM-C485 Biosynthesis and Physiology (Spring) (3 cr.)
• CHEM-C486 Biological Chemistry Lab (Spring) (2 cr.)
• FIS 40100 Forensic Chemistry I (Fall) (4 cr.)
• FIS 40400 Forensic Chemistry II (Spring) (4 cr.)
• FIS 40600 Forensic Microscopy (3 cr.)
• GEOL-G306 Earth Materials (Spring) (4 cr.)

Chemistry Concentration advanced science elective course list
• ANTH-B426 Human Osteology (3 cr.)
• BIOL-K322 Genetics and Molecular Biology (3 cr.)
• BIOL-K323 Genetics and Molecular Biology Lab (2 cr.)
• BIOL-K324 Cell Biology (Spring) (3 cr.)
• BIOL-K325 Cell Biology Laboratory (Spring) (2 cr.)
• BIOL-K338 Intro Immunology (3 cr.)
• BIOL-K339 Immunology Laboratory (2 cr.)
• BIOL-K356 Microbiology (Spring) (3 cr.)
• BIOL-K357 Microbiology Laboratory (Spring) (2 cr.)
• BIOL-K483 Biological Chemistry (3 cr.)
• BIOL-K484 Cellular Biochemistry (3 cr.)
• BIOL-N217 Human Physiology (5 cr.)
• BIOL-N261 Human Anatomy (5 cr.)
• CHEM-C430 Inorganic Chemistry (Spring) (3 cr.)
• CHEM-C45 Inorganic Chemistry Lab (Spring) (2 cr.)
• CHEM-C484 Biomolecules and Catabolism (Fall) (3 cr.)
• CHEM-C485 Biosynthesis and Physiology (Spring) (3 cr.)
• CHEM-C486 Biological Chemistry Lab (Spring) (2 cr.)
• FIS 40200 Forensic Biology I (Fall) (4 cr.)
• FIS 40300 Forensic Biology II (Spring) (4 cr.)
• GEOL-G306 Earth Materials (Spring) (4 cr.)

Area V Electives A minimum of 124 credit hours must be completed for graduation. The number of electives required will depend upon your situation.

Additional Policies
1) Overlapping Courses
The Forensic and Investigative Sciences Program will not grant credit for a course when considerable duplication of course content occurs with another course that has been taken for credit. In general, credit will be allowed for the higher-level course, but not for the lower-level course. The following listings are considered to be duplications (lower-level courses listed first):
• MATH 22100 / MATH 22200 and MATH 23100 / MATH 23200 and MATH 16500 / MATH 16600
• PHYS-P201 / PHYS-P202 and PHYS 15200 and PHYS 25100
For example, if a student has earned credit for MATH 16500 / MATH 16600, the student will receive no credit for MATH 22100 / MATH 22200, even if earned previously.

2) Minor earned as a result of completing degree requirements for the Forensic and Investigative Sciences major
As a result of completing a Bachelor of Science in Forensic and Investigative Sciences and depending on the concentration selected, a student may earn enough credit hours to satisfy the requirements for a minor in chemistry in addition to the major in FIS. Also, a student majoring in FIS, with the selection of additional electives, may also earn minors in other areas (e.g., biology minor or criminal justice general minor). Please consult with the academic advisor for the FIS program and the appropriate academic unit that awards the minor.

Bachelor of Science (124 cr. required)
Forensic and Investigative Sciences Biology Concentration Sample Plan of Study

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL-K101 Concepts of Biology I</td>
<td>5</td>
</tr>
<tr>
<td>CHEM-C105 Principles of Chemistry I</td>
<td>3</td>
</tr>
<tr>
<td>CHEM-C125 Experimental Chemistry I</td>
<td>2</td>
</tr>
<tr>
<td>MATH 23100 Calculus for the Life Sciences I</td>
<td>3</td>
</tr>
<tr>
<td>ENG-W131 English Composition I</td>
<td>3</td>
</tr>
<tr>
<td>SCI-I120 Windows on Science Total</td>
<td>17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Second Semester</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL-K103 Concepts of Biology II</td>
<td>5</td>
</tr>
<tr>
<td>CHEM-C106 Principles of Chemistry II</td>
<td>3</td>
</tr>
<tr>
<td>CHEM-C126 Experimental Chemistry II</td>
<td>2</td>
</tr>
<tr>
<td>MATH 23200 Calculus for the Life Sciences II</td>
<td>3</td>
</tr>
<tr>
<td>COMM-R110 Fundamentals of Speech Communication</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>16</td>
</tr>
</tbody>
</table>

Sophomore Year

<table>
<thead>
<tr>
<th>Third Semester</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIS 20500 Concepts of Forensic Science I (Fa/Su)</td>
<td>3</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
</tr>
<tr>
<td>BIOL-K322</td>
<td>Genetics and Molecular Biology</td>
</tr>
<tr>
<td>BIOL-K323</td>
<td>Genetics and Molecular Biology Lab (Fa)</td>
</tr>
<tr>
<td>CHEM-C341</td>
<td>Organic Chemistry I</td>
</tr>
<tr>
<td>CHEM-C343</td>
<td>Organic Chemistry Laboratory I</td>
</tr>
<tr>
<td>Second English Composition Course</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td></td>
</tr>
</tbody>
</table>

Fourth Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIS 20600</td>
<td>Concepts of Forensic Science II (Sp/Su)</td>
<td>3</td>
</tr>
<tr>
<td>CHEM-C342</td>
<td>Organic Chemistry II</td>
<td>3</td>
</tr>
<tr>
<td>CHEM-C344</td>
<td>Organic Chemistry Laboratory II</td>
<td>2</td>
</tr>
<tr>
<td>HIST-H114</td>
<td>History of Western Civilization II</td>
<td>3</td>
</tr>
<tr>
<td>or HIST-H109</td>
<td>Perspectives on the World: 1800 to Present</td>
<td>3</td>
</tr>
<tr>
<td>Advanced Science elective</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>16</td>
</tr>
</tbody>
</table>

Junior Year

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL-K338</td>
<td>Introductory Immunology (Fa)</td>
<td>3</td>
</tr>
<tr>
<td>BIOL-K339</td>
<td>Immunology Laboratory (Fa)</td>
<td>2</td>
</tr>
<tr>
<td>PHYS-P201</td>
<td>General Physics I</td>
<td>5</td>
</tr>
<tr>
<td>SPEA-J101</td>
<td>American Criminal Justice System</td>
<td>3</td>
</tr>
<tr>
<td>List S</td>
<td>Social Sciences elective</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>16</td>
</tr>
</tbody>
</table>

Sixth Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIS 30500</td>
<td>Professional Issues in Forensic Science (Sp)</td>
<td>3</td>
</tr>
<tr>
<td>PHYS-P202</td>
<td>General Physics II</td>
<td>5</td>
</tr>
<tr>
<td>STAT 30100</td>
<td>Elementary Statistical Methods</td>
<td>3</td>
</tr>
<tr>
<td>Advanced Science elective</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>16</td>
</tr>
</tbody>
</table>

Summer between junior and senior year

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIS 49000</td>
<td>Capstone Experience</td>
<td>5</td>
</tr>
</tbody>
</table>

Senior Year

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIS 40200</td>
<td>Forensic Biology I (Fa)</td>
<td>4</td>
</tr>
<tr>
<td>BIOL-K483</td>
<td>Biological Chemistry (Fa)</td>
<td>3</td>
</tr>
<tr>
<td>Computer Science Course</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>List C</td>
<td>Comparative World Cultures elective</td>
<td>3</td>
</tr>
<tr>
<td>Advanced Science elective</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>16</td>
</tr>
</tbody>
</table>

Eighth Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIS 40300</td>
<td>Forensic Biology II (Sp)</td>
<td>4</td>
</tr>
<tr>
<td>FIS 41500</td>
<td>Forensic Science and the Law</td>
<td>3</td>
</tr>
<tr>
<td>BIOL-K484</td>
<td>Cellular Biochemistry (Sp)</td>
<td>3</td>
</tr>
<tr>
<td>List H</td>
<td>Humanities elective</td>
<td>3</td>
</tr>
<tr>
<td>CAND 99100</td>
<td>Candidate for Graduation</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>13</td>
</tr>
</tbody>
</table>

Forensic and Investigative Sciences Chemistry Option

Sample Plan of Study

Bachelor of Science (124 cr. required)

Freshman Year

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIS 20500</td>
<td>Concepts of Forensic Science I (Fa/Su)</td>
<td>3</td>
</tr>
<tr>
<td>CHEM-C105</td>
<td>Principles of Chemistry I</td>
<td>3</td>
</tr>
<tr>
<td>CHEM-C106</td>
<td>Experimental Chemistry I</td>
<td>2</td>
</tr>
<tr>
<td>MATH 23100</td>
<td>Calculus for the Life Sciences I</td>
<td>3</td>
</tr>
<tr>
<td>ENG-W131</td>
<td>English Composition</td>
<td>3</td>
</tr>
<tr>
<td>SCI-I120</td>
<td>Windows on Science</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>15</td>
</tr>
</tbody>
</table>

Second Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIS 20600</td>
<td>Concepts of Forensic Science I (Sp/Su)</td>
<td>3</td>
</tr>
<tr>
<td>CHEM-C106</td>
<td>Principles of Chemistry II</td>
<td>3</td>
</tr>
<tr>
<td>CHEM-C126</td>
<td>Experimental Chemistry II</td>
<td>2</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Name</td>
<td>Credits</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td>---------</td>
</tr>
<tr>
<td>MATH 23200</td>
<td>Calculus for the Life Sciences II</td>
<td>3</td>
</tr>
<tr>
<td>COMM-R110</td>
<td>Fundamentals of Speech Communication</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>14</td>
</tr>
</tbody>
</table>

Sophomore Year

<table>
<thead>
<tr>
<th>Third Semester</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM-C341</td>
<td>Organic Chemistry I</td>
</tr>
<tr>
<td>CHEM-C343</td>
<td>Organic Chemistry Laboratory I</td>
</tr>
<tr>
<td>PHYS-P201</td>
<td>General Physics I</td>
</tr>
<tr>
<td>SPEA-J101</td>
<td>The American Criminal Justice System</td>
</tr>
<tr>
<td>SPEA-J010</td>
<td>Second English Composition Course</td>
</tr>
<tr>
<td>Total</td>
<td>16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fourth Semester</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM-C342</td>
<td>Organic Chemistry II</td>
</tr>
<tr>
<td>CHEM-C344</td>
<td>Organic Chemistry Laboratory II</td>
</tr>
<tr>
<td>PHYS-P202</td>
<td>General Physics II</td>
</tr>
<tr>
<td>STAT 30100</td>
<td>Elementary Statistical Methods</td>
</tr>
<tr>
<td>HIST-H114</td>
<td>History of Western Civilization II</td>
</tr>
<tr>
<td>or HIST-H109</td>
<td>Perspective on the World: 1800 to Present</td>
</tr>
<tr>
<td>Total</td>
<td>16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Summer between sophomore and junior year</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM-C310</td>
<td>Analytical Chemistry (Sp/Su)</td>
</tr>
<tr>
<td>CHEM-C311</td>
<td>Analytical Chemistry Lab (Sp/Su)</td>
</tr>
<tr>
<td>Elective or General Education Course</td>
<td>Total</td>
</tr>
</tbody>
</table>

Junior Year

<table>
<thead>
<tr>
<th>Fifth Semester</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL-K101</td>
<td>Concepts of Biology I</td>
</tr>
<tr>
<td>CHEM-C410</td>
<td>Principles of Chemical Instrumentation (Fa)</td>
</tr>
</tbody>
</table>

Minor in Forensic and Investigative Sciences

The minor in Forensic and Investigative Sciences can be used in relevant majors where the student’s primary
interest is in the major but who wishes to learn the basic concepts of forensic science and how to apply them to other fields of knowledge. Prerequisites to any of the minor courses are not included but are required in order to complete the minor.

- FIS 205 Concepts of Forensic Science I (3 cr.)
- FIS 206 Concepts of Forensic Science II (3 cr.) or PSY-B375 Psychology and Law (3 cr.)
- FIS 305 Professional Issues in Forensic Science (3 cr.)
- FIS 415 Forensic Science and the Law (3 cr.)
- SPEA J303 Evidence (3 cr.)
- SPEA J320 Criminal Investigation (3 cr.)

Forensic and Investigative Sciences Biology Option

Sample Plan of Study

Bachelor of Science (124 cr. required)

Freshman Year

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIS 205</td>
<td>3</td>
</tr>
<tr>
<td>CHEM C105</td>
<td>3</td>
</tr>
<tr>
<td>CHEM C125</td>
<td>2</td>
</tr>
<tr>
<td>MATH 221</td>
<td>3</td>
</tr>
<tr>
<td>ENG W131</td>
<td>3</td>
</tr>
<tr>
<td>SCI I20</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Second Semester</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL K101</td>
<td>5</td>
</tr>
<tr>
<td>CHEM C106</td>
<td>3</td>
</tr>
<tr>
<td>CHEM C126</td>
<td>2</td>
</tr>
<tr>
<td>MATH 222</td>
<td>3</td>
</tr>
<tr>
<td>COMM R 110</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>16</td>
</tr>
</tbody>
</table>

Sophomore Year

<table>
<thead>
<tr>
<th>Third Semester</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL K103</td>
<td>5</td>
</tr>
<tr>
<td>CHEM C341</td>
<td>3</td>
</tr>
<tr>
<td>CHEM C343</td>
<td>2</td>
</tr>
<tr>
<td>SPEA J101</td>
<td>3</td>
</tr>
</tbody>
</table>

Junior Year

<table>
<thead>
<tr>
<th>Fourth Semester</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIS 206</td>
<td>3</td>
</tr>
<tr>
<td>BIOL K322</td>
<td>3</td>
</tr>
<tr>
<td>CHEM C342</td>
<td>3</td>
</tr>
<tr>
<td>CHEM C344</td>
<td>2</td>
</tr>
<tr>
<td>HIST H114</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>14</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fifth Semester</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL K323</td>
<td>2</td>
</tr>
<tr>
<td>BIOL K338</td>
<td>3</td>
</tr>
<tr>
<td>BIOL K339</td>
<td>2</td>
</tr>
<tr>
<td>PHYS P201</td>
<td>5</td>
</tr>
<tr>
<td>SPEA J303</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sixth Semester</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIS 305</td>
<td>3</td>
</tr>
<tr>
<td>CSCI N301</td>
<td>3</td>
</tr>
<tr>
<td>PHYS P202</td>
<td>5</td>
</tr>
<tr>
<td>STAT 301</td>
<td>3</td>
</tr>
<tr>
<td>List C</td>
<td>3</td>
</tr>
<tr>
<td>List S</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Summer between junior and senior year</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIS 490 Capstone Experience</td>
<td>5</td>
</tr>
<tr>
<td>List S</td>
<td>3</td>
</tr>
<tr>
<td>List S</td>
<td>8</td>
</tr>
</tbody>
</table>

Senior Year

<table>
<thead>
<tr>
<th>Seventh Semester</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIS 402 Forensic Biology I</td>
<td>4</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
</tr>
<tr>
<td>FIS 415</td>
<td>Forensic Science and the Law</td>
</tr>
<tr>
<td>1FIS 250/FIS 251</td>
<td>Photography at a Crime Scene I/II (if FIS 260/FIS 261 sequence not selected)</td>
</tr>
<tr>
<td>BIOL K483</td>
<td>Biological Chemistry</td>
</tr>
<tr>
<td>Electives as needed (see degree check sheet for list of electives)</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
</tr>
</tbody>
</table>

Eighth Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIS 403</td>
<td>Forensic Biology II</td>
<td>4</td>
</tr>
<tr>
<td>SPEA J320</td>
<td>Criminal Investigation</td>
<td>3</td>
</tr>
<tr>
<td>BIOL K484</td>
<td>Cellular Biochemistry</td>
<td>3</td>
</tr>
<tr>
<td>1FIS 260/FIS 261</td>
<td>Scientific Digital Imaging I/II (if FIS 250/FIS 251 sequence not selected)</td>
<td>6</td>
</tr>
<tr>
<td>Electives as needed (see degree check sheet for list of electives)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CAND 991</td>
<td>Candidate for Graduation</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>19</td>
</tr>
</tbody>
</table>

Summer

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIS 490</td>
<td>Capstone Experience (if not completed during preceding summer)</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Forensic and Investigative Sciences Chemistry Option

Sample Plan of Study

Bachelor of Science (124 cr. required)

Freshman Year

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIS 206</td>
<td>Concepts of Forensic Science I</td>
</tr>
<tr>
<td>CHEM C105</td>
<td>Principles of Chemistry I</td>
</tr>
<tr>
<td>CHEM C 106</td>
<td>Experimental Chemistry I</td>
</tr>
<tr>
<td>MATH 221</td>
<td>Calculus for Technology I</td>
</tr>
</tbody>
</table>

Second Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL K101</td>
<td>Concepts of Biology I</td>
<td>6</td>
</tr>
<tr>
<td>CHEM C106</td>
<td>Principles of Chemistry I</td>
<td>3</td>
</tr>
<tr>
<td>CHEM C126</td>
<td>Experimental Chemistry II</td>
<td>2</td>
</tr>
<tr>
<td>MATH 222</td>
<td>Calculus for Technology II</td>
<td>3</td>
</tr>
<tr>
<td>COMM R110</td>
<td>Fundamentals of Speech Communication</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>16</td>
</tr>
</tbody>
</table>

Third Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM C310</td>
<td>Analytical Chemistry</td>
<td>2</td>
</tr>
<tr>
<td>CHEM C311</td>
<td>Analytical Chemistry Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>CHEM C341</td>
<td>Organic Chemistry I</td>
<td>3</td>
</tr>
<tr>
<td>CHEM C343</td>
<td>Organic Chemistry II</td>
<td>2</td>
</tr>
<tr>
<td>SPEA J101</td>
<td>The American Criminal Justice System</td>
<td>3</td>
</tr>
<tr>
<td>Second English Composition Course</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>14</td>
</tr>
</tbody>
</table>

Fourth Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIS 206</td>
<td>Concepts of Forensic Science II</td>
<td>3</td>
</tr>
<tr>
<td>BIOL K103</td>
<td>Concepts of Biology II</td>
<td>5</td>
</tr>
<tr>
<td>CHEM C342</td>
<td>Organic Chemistry II</td>
<td>3</td>
</tr>
<tr>
<td>CHEM C344</td>
<td>Organic Chemistry II</td>
<td>2</td>
</tr>
<tr>
<td>HIST H114</td>
<td>History of Western Civilization II</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>16</td>
</tr>
</tbody>
</table>

Junior Year

<table>
<thead>
<tr>
<th>Fifth Semester</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM C410</td>
<td>Principles of Chemical Instrumentation</td>
</tr>
</tbody>
</table>

...
Sixth Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIS 305</td>
<td>Professional Issues in Forensic Science</td>
<td>3</td>
</tr>
<tr>
<td>PHYS P202</td>
<td>General Physics II</td>
<td>5</td>
</tr>
<tr>
<td>CSCI N301</td>
<td>Fundamental Computer Science Concepts</td>
<td>3</td>
</tr>
<tr>
<td>List C</td>
<td>Comparative World Cultures elective</td>
<td>3</td>
</tr>
<tr>
<td>List H</td>
<td>Humanities elective</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>Credits</td>
<td>16</td>
</tr>
</tbody>
</table>

Summer between junior and senior year

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIS 490</td>
<td>Capstone Experience</td>
<td>5</td>
</tr>
<tr>
<td>List S</td>
<td>Social Sciences elective</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>Credits</td>
<td>8</td>
</tr>
</tbody>
</table>

Senior Year

Seventh Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIS 401</td>
<td>Forensic Chemistry I</td>
<td>4</td>
</tr>
<tr>
<td>FIS 415</td>
<td>Forensic Science and the Law</td>
<td>3</td>
</tr>
<tr>
<td>1FIS 250/FIS 251</td>
<td>Photography at a Crime Scene I/II (if FIS 260/FIS 261 sequence is not selected)</td>
<td>6</td>
</tr>
<tr>
<td>Electives as needed (see degree check sheet for list of electives)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>Credits</td>
<td>13</td>
</tr>
</tbody>
</table>

Eighth Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIS 404</td>
<td>Forensic Chemistry II</td>
<td>4</td>
</tr>
<tr>
<td>SPEA J320</td>
<td>Criminal Investigation</td>
<td>3</td>
</tr>
<tr>
<td>CHEM C360</td>
<td>Elementary Physical Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>Credits</td>
<td>10</td>
</tr>
</tbody>
</table>

1. Students must complete one of two sequences: FIS 250 and FIS 251 (both fall semester only) or FIS 260 and FIS 261 (both spring semester only). See advisor for details.

Graduate Program

Admission Requirements

The prospective student should have a bachelor’s degree from an accredited institution, show promise of ability to engage in advanced work, and have adequate preparation.

Incoming students with an undergraduate grade point average (GPA) of 3.0 or higher (on a 4.0 scale) will automatically be recommended for admission as regular graduate students. Those with a GPA below 3.0 will be admitted as temporary graduate students with the proviso that a 3.0 average must be achieved in the first three graduate courses (or 9 credit hours) if they are to be admitted as regular graduate students.

Application for Admission

Applications for full-time study should be completed by March for the following fall semester to ensure complete consideration for fellowships and other financial support (see “Graduate Program Financial Aid” in this section). Applications for part-time graduate admission may be submitted at any time.

Temporary graduate students who wish to enroll in courses, though not necessarily in a degree program, should contact the IUPUI Graduate Office, Union Building, Room UN-207, 620 Union Drive, Indianapolis, IN 46202-5167; phone (317) 274-1577. Students should be aware that no more than 12 credit hours earned as a nondegree student may be counted toward a degree program.

Graduate Program Financial Aid

All full-time thesis graduate students receive support stipends through teaching assistantships, research assistantships, departmental fellowships, or through university fellowships. Students with assistantships and fellowships are also eligible for health insurance. Consult the graduate advisor for current funding levels.

Master of Science Program

The M.S. Program in Forensic Science, which awards a Purdue University degree, requires 35 credit hours...
of study beyond the baccalaureate level. It is designed for students seeking careers as professional forensic scientists who desire employment in the criminal justice field or a related area. Graduates are in demand throughout the United States and worldwide.

General Degree Options and Requirements

Students must apply in one of the following concentrations: forensic chemistry or biology. All students take a core of required courses, including a professional issues course, law courses and a clinical law course. Each concentration contains specific required courses taken by students in that concentration.

With the exception of students who are employed full time in an analytical or forensic science laboratory, all students must include a thesis. This program requires 20 credit hours of course work and 15 credit hours of thesis completion and defense and is available to full-time and part-time students. Students who are employed full time may elect the non-thesis option. This program includes 35 credit hours of classes approved by the Program. This may include up to six credits of internship.

Interdisciplinary Studies of Bachelor of Science Degree Program

School of Science, IUPUI
Science Building, LD 222
402 N. Blackford Street
Indianapolis, IN 46202-3276
Phone: (317) 274-0625; fax: (317) 274-0628

- **Director** Kathleen A. Marrs, Associate Dean and Associate Professor
- **Program Advisor** Joseph L. Thompson, jlthomp@iupui.edu

- Bachelor of Science Degree
- Admissions

The purpose of the Bachelor of Science (B.S.) in Interdisciplinary Studies Program is to provide an opportunity for IUPUI students to construct individual majors that are science-based, interdisciplinary, and not represented by existing major programs. Instead of a proscribed area of study as with standard majors, the interdisciplinary studies major will accommodate a variety of plans of study, with courses drawn from many subject areas in the sciences and beyond. The Interdisciplinary Studies degree program provides an academic structure that encourages creative and motivated undergraduates to design unique science-based interdisciplinary majors. In collaboration with a faculty mentor, students will create plans of study that demonstrate coherence, rigor, rationale, and vision. The B.S. in Interdisciplinary Studies requires a capstone project or internship experience, including a strong writing component. Particular plans of study may take advantage of the IUPUI Honors Program, the IUPUI Undergraduate Research Opportunities Program, the Consortium for Urban Education to include relevant courses taught at five other Indianapolis colleges and universities, or may include specialized service learning experiences in consultation with the IUPUI Center for Public Service and Leadership.

Each individualized major student, in consultation with the program advisor, will select a faculty mentor that best fits the student’s interests. Once assigned, the student will work with the faculty mentor to develop a plan of study outlining the proposed curriculum, which will be submitted to a faculty committee for approval. As progress is made on the approved curriculum, the student will be expected to maintain a journal of this progress. The journal will be reviewed periodically by the program advisor, faculty mentor, and faculty committee to ensure progress is made and to provide guidance for course enrollment.

Though not meant to be a definitive list, examples of interdisciplinary majors with an emphasis in the sciences include:

- Art Therapy
- Art Restoration and Preservation
- Geochemistry
- Chemical Science and Technology
- Music Therapy
- Neurorscience
- Physics of Music
- Scientific Writing

Admissions

All students admitted to the Interdisciplinary Studies Program must have a minimum GPA of 2.50 and meet existing admission requirements of the School of Science. A student may apply for admission to the Interdisciplinary Studies Program by enrolling in a 1-credit hour tutorial (SCI-I200) and preparing an in-depth proposal for an interdisciplinary studies major under the guidance of a faculty mentor who will function as the main program advisor for the student. The student is accepted for admission to the Interdisciplinary Studies Program when the faculty mentor and the Educational Policies Committee of the School of Science approve the student’s proposal.

Before admission to the Interdisciplinary Studies Program, students must have completed a minimum of 15 credit hours of course work, but no more than 60 credit hours. The course work must include ENG-W131, a science course with lab, and an appropriate mathematics course. All science and mathematics courses on record must have minimum grades of C. Courses included in a specific interdisciplinary studies major may have prerequisites specified by the departments that offer them.

Curriculum

The curriculum for each interdisciplinary studies student will vary so as to meet the particular academic objective of the student. The interdisciplinary studies major areas of study will consist of a coherent set of courses that define a clearly recognizable focus of study for which faculty can provide oversight and ensure intellectual integrity and rigor. A faculty committee will approve all interdisciplinary study major areas, and each student in the program will work closely with a faculty mentor.

The interdisciplinary major will comprise 40 credit hours of regular courses from at least two disciplines, a 1-hour tutorial, and culminate with a 3- to 6-hour senior capstone project or internship. The tutorial will include the development of an in-depth proposal for the major and
the regular submission of a journal on the progress in the major.

- A minimum of 124 credit hours distributed as follows
 - General education (47 credits)
 - Interdisciplinary major with courses from at least two disciplines (40 credits)
 - Electives (37 credits)

- The 40 credit hours within the interdisciplinary major has the following framework:
 1. SCI-I200 Tutorial in Interdisciplinary Studies (1 credit) includes the development of an in-depth proposal for the major and the submission of a journal on progress in the major
 2. SCI-I494 (3-6 credits) Internship in Science-Based Fields or SCI-I495 (3-6 credits) Readings and Research in Science to address the senior capstone experience
 3. 36 credit hours of courses from at least two disciplines defining the major area

Bachelor of Science Degree Requirements

For details on school specific policies, see the School of Science requirements under “Undergraduate Programs” in this bulletin. Please note that at least 32 credit hours of course work must be at the 300 level or higher.

First-Year Experience Course Beginning freshmen and transfer students with fewer than 18 credit hours are required to take SCI I20 Windows on Science (1 cr.), PSY B103 Orientation to a Major in Psychology (1 cr.), or an equivalent first-year experience course.

Area I English Composition and Communication Skills (9 cr.)

English Composition (6 cr.)
- ENG-W131 Elementary Composition I
- Second Composition Course that has ENG-W131 as a prerequisite

Speech Communication (3 cr.)
- COMM-R110 Fundamentals of Speech Communication

Area II Foreign Language

No foreign language proficiency is required for the Bachelor of Science degree. However, if knowledge of a foreign language is pertinent to the interdisciplinary major, a student may choose to pursue one.

Area IIIA Humanities, Social Sciences, and Comparative World Cultures (12 cr.)

The information about the IIIA requirements in the School of Science part of this bulletin lists courses that may be used to satisfy the requirements below. Students should consult the program advisor before registering for these courses.

- HIST-H114 Western Civilization II
- List H course: Choose one course (3 cr.) from this list. The list of course choices is located under the School of Science requirements “Undergraduate Programs” in this bulletin.

Area IIIB Junior/Senior Integrator (3 cr.)

No junior/senior integrator course is required.

Area IIIC Physical and Biological Sciences

See the School of Science requirements under “Undergraduate Programs” in this bulletin. Four courses outside the major from the physical/biological sciences, one of which must include a corresponding laboratory. Laboratory courses without a lecture component may be taken for credit, but do not count toward the four-course requirement. No grade below C- will be accepted in any of these courses. Consult the program advisor concerning the acceptability of courses.

Area IIID Mathematical Sciences (9 cr.)

- Two courses beyond algebra and trigonometry. (6 cr.)
- One course in computer science. (3 cr.)

No grade below C- will be accepted in any of these courses.

Note: Computer Science CSCI-N100 level courses and CPT/CIT 10600 do not count for credit toward any degree in the School of Science. Also, CSCI-N241 and CSCI-N299 do not count in Area IIID but may count as a general elective.

Area IV Interdisciplinary Major Concentration (40 cr.)

Minimum requirements include 40 credit hours of core interdisciplinary major courses.

All courses applicable to the major must have a minimum grade of C.

Other Requirements

1. SCI-I200 Tutorial in Interdisciplinary Studies (1 cr.) is a tutorial under the supervision of a faculty mentor to guide a student in the development of a proposal to pursue a specially focused, science-based, interdisciplinary major. The student-generated proposal must include justification for selecting the interdisciplinary major, a comprehensive plan of study that lists courses comprising the major and a timetable for completing the plan, rationale for coherence of the plan, and a description of future prospects in terms of graduate/professional study and/or career opportunities. The student will be required to consult faculty in the fields that encompass the interdisciplinary major. The proposal must be submitted for approval to the School of Science Educational Policies Committee, which has faculty representation from all departments in the school. Upon approval, the student will begin the program and maintain a journal detailing progress on the plan of study. The plan may be modified only in consultation with the faculty mentor and with
approval of the Educational Policies Committee. The faculty mentor will determine the grade for the tutorial.

2. Interdisciplinary Major (36 credits)

3. The Senior Capstone Experience will be accomplished through either SCI-I494 Internship in Science-Based Fields (3-6 cr.) or SCI-I495 Readings and Research in Science (3-6 cr.). For a student choosing the internship experience, there must be a direct match to the interdisciplinary major in an industrial, business, government, or other suitable setting. The student’s faculty mentor must approve the internship. A comprehensive written report of the internship experience is required. Alternatively, a student may be engaged in a research project under faculty oversight that links directly to the student’s interdisciplinary major. The faculty mentor must approve the research project. The student is required to submit a detailed research report at the conclusion of the project.

Department of Mathematical Sciences

IUPUI
Science Building, LD 270
402 N. Blackford Street
Indianapolis, IN 46202-3216
Phone: (317) 274-6918; fax: (317) 274-3460
www.math.iupui.edu

- Professors Bleher (Chancellor’s Professor), Boukai, Chin, Cowen, A. Its (Distinguished Professor), Misurewicz, Morton, Ng (Acting Dean, School of Science, M. L. Bittinger Chair Professor), Penna, Sen, Shen (Chair), Tarasov
- Professors Emeriti Bittinger (Honorary), Burkinshaw, Hutton, Kaminker, Kleye, Kuczkowski, Reid, Rothman
- Associate Professors Geller, Ji, Kitchens, Klimek, Mukhin, Peng, Sarkar, Tam, Watt (Associate Dean, School of Science, and Associate Chair)
- Associate Professors Emeriti Luke, John G. Miller, Patterson, Rigdo
- Assistant Professors Buse, Ghosh, Kuznetsov, F. Li, Martin, Perez, Roeder, Rubchinsky, Rusu (IUPU Columbus), Zhu
- Adjunct Assistant Research Professor Fokin
- Adjunct Professors Worth, Yiannoutsos
- Senior Lecturers Cross, Hall, E. Its, McBride, Rangazas
- Lecturers Dona, Farris, Frey, Hernandez, Hicks, Kitt, Melshheimer, Meshulam, John L. Miller, Rainey
- Degree Programs
- Graduate
- Requirements

Mathematical sciences include the areas of pure and applied mathematics, mathematics education, actuarial science, and statistics. Mathematics involves the study of problems in areas such as algebra, geometry, analysis, and logic and of problems arising in the real world. Mathematics, actuarial science and statistics are used in the physical sciences, engineering, the social, life, and management sciences. Mathematics education involves the training of prospective secondary teachers.

Degree Programs
The department offers the Purdue University Bachelor of Science degree in mathematics with options in pure mathematics, applied mathematics, actuarial science, and secondary school teaching.

Graduate degrees include the Purdue University Master of Science, with concentrations in Pure Mathematics, Applied Mathematics, Mathematics Education, Applied Statistics, and the Purdue University Doctor of Philosophy in mathematics, by arrangement with Purdue University, West Lafayette, with all requirements completed on the IUPUI campus. In addition, together with the Division of Biostatistics in the Indiana University School of Medicine, the department administers and offers an Indiana University Doctor of Philosophy in Biostatistics, with all requirements completed on the IUPUI campus.

Bachelor of Science
Students are encouraged to declare a mathematics major in their freshman year, so they can receive proper academic advising. A grade point average of 2.50 with no grades below C in mathematics courses through MATH 35100 is a minimum indication of success in this major.

Degree Requirements
The baccalaureate degree general requirements, the area requirements, and the Bachelor of Science degree requirements are listed earlier in this bulletin (see the School of Science requirements under “Undergraduate Programs”). For a Bachelor of Science degree in mathematics, the following additional requirements and restrictions apply:

First-Year Experience Course
Beginning freshmen and transfer students with fewer than 18 credit hours are required to take SCI-I120 Windows on Science (1 cr.) or an equivalent first-year experience course.

Area I English Composition and Communication Skills
No additional requirements beyond School-level requirements, located under the School of Science requirements “Undergraduate Programs” in this bulletin. The second semester of English composition may be satisfied by ENG-W132 (or ENG-W150), ENG-W231, or TCM 32000.

Area II Foreign Language
All degree options require 5 credit hours in a modern foreign language.

Area IIIA Humanities, Social Sciences, and Comparative World Cultures (12 cr.)
HIST-H114 Western Civilization II or HIST-H109 Perspectives on the World: 1800-Present

List H course: Choose one course (3 cr.) from this list. The list of course choices is located under the School of Science requirements “Undergraduate Programs” in this bulletin.

List S course: Choose one course (3 cr.) from this list. The list of course choices is located under the School of
Science requirements “Undergraduate Programs” in this bulletin.

List C course: Choose one course (3 cr.) from this list. The list of course choices is located under the School of Science requirements “Undergraduate Programs” in this bulletin.

Area IIIB Junior/Senior Integrator
The Junior/Senior Integrator requirement is suspended indefinitely as a school-level requirement. No junior/senior integrator course is required for mathematics majors.

Area IICC Physical and Biological Sciences
Refer to specific mathematics option major requirements for any additional Area IICC course requirement.

Note: Certain courses, such as CHEM-C101, CHEM-C102, CHEM-C110; PHYS 10000, PHYS 20000, PHYS-P201, and PHYS-P202, may not be used to fulfill the science requirement, Area IICC, of the School of Science.

Also, only mathematics majors in the Secondary School Teaching Option may use PHYS 21800 and PHYS 21900 to apply to the Area IICC science requirements.

If in doubt about a particular course, the student should consult a mathematics department advisor.

Area IICD Mathematical Sciences
See Area IV Major Requirements for required mathematics courses. Mathematics courses below MATH 16500 and those mathematics courses in which the student has received grades below C- do not count toward the degree. MATH-M118 will count as a general elective.

The Area IICD computer science requirement must be in a higher-level programming course (not BASIC). A grade of C (2.0) or better is required.

Note: Computer Science CSCI-N241 and CSCI-N299 do not count in Area IICD, but may count as a general elective.

Area IV
Mathematics courses in which a student has received grades below C (2.0) do not count in Area IV. The Area IV requirements for the secondary area of concentration and the major for the four degree options—pure mathematics, applied mathematics, actuarial science, and secondary teaching—are described in the following sections. There is no single semester-by-semester plan of study for any of the options because flexibility is encouraged within the various programs. However, a sample program that shows one possible sequence of courses is given for each option. Variations from the sample program should be made in consultation with the student’s advisor. Because of the complexity of the requirements and because certain courses are not offered every semester, it is important that each student consult his or her assigned advisor as soon as possible in order to proceed through a proper plan of study for the chosen degree program. A minimum grade point average of 2.50 is required in all mathematics courses that count toward the major.

Area IV Secondary Area of Concentration Requirements
For each student to acquire some depth of study in a subject outside of the major area, the Department of Mathematical Sciences requires students to have a secondary area of concentration outside of the department. The secondary area of concentration consists of at least 18 credit hours and includes at least three courses beyond the introductory level. It is subject to the approval of the student’s advisor. Although a second area of concentration is usually in one department, it may be from two or more if the advisor approves.

Courses may be used for the double purpose of fulfilling the general requirements and for fulfilling the secondary area of concentration requirements of the Department of Mathematical Sciences. For students in the Pure Mathematics Option or the Applied Mathematics Option, a secondary area in one of the physical sciences or in a subject that makes substantial use of mathematics, such as computer science, engineering, or economics, is desirable. Students in the Secondary School Teaching Option satisfy the requirements for a secondary area by the courses they take to meet the professional education requirement. Students in the Actuarial Science Option satisfy the requirements for a secondary area by the required economics and business courses they take.

The requirement of 18 credit hours in a secondary area of concentration does not, by itself, constitute an official minor that would be acknowledged on the student’s transcript. A minor must be offered through the department or school in which the minor is taken. Students in the Actuarial Science Option satisfy the requirements for a minor in economics by the economics courses they are required to take (Students must apply to the Economics Department to be awarded an official minor.).

Degree Requirements
Major Requirements

Pure Mathematics Option
With this option, students will be well prepared for graduate work in pure mathematics. However, students with undergraduate degrees in pure mathematics have also been successful with graduate studies in business administration, computer science, economics, educational research, engineering, law, medicine, operations research, physics, psychology, and statistics. Persons with advanced degrees in pure mathematics find careers primarily in college teaching, but careers in business, industry, or government service are also possible.

Courses taken to satisfy the Area IICC requirements must include PHYS 15200 (or a more advanced physics course).

The Area IV major requirements are as follows:

1. Core curriculum: MATH 16500, MATH 16600, MATH 17100, MATH 26100, MATH 26600, and MATH 35100 (or MATH 51100)
2. MATH 45300 Beginning Abstract Algebra
3. MATH 46200 Elementary Differential Geometry
4. Two of the three: MATH 44400, MATH 42500, MATH 32101
5. Twelve (12) additional credit hours selected from MATH 27600 and mathematics and statistics courses at the 300 level or above. Courses in computer science or courses in other departments of the School of Science that have appropriate mathematical content may be selected with the approval of the advisor. Normally, no more than 6
credit hours will be approved outside of mathematics and statistics.

6. The 45 credit hours required above must include at least 6 credit hours by completing two of the course sequences listed below.

7. Minimum two (2) credit hours of MATH 49200 Capstone Experience

Course Sequences

Two course sequences (each course 3 credit hours) are required. There must be at least one * sequence. No overlaps are allowed.

- *Foundations of Analysis: MATH 44400 and MATH 44500
- *Complex Analysis and Differential Equations: MATH 42500 and MATH 52000
- *Abstract Algebra: MATH 45300 and MATH 45400
- *Algebra and Number Theory: MATH 45600 and MATH 45300
- *Linear Algebra: MATH 35100 and MATH 35300
- *Differential Geometry: MATH 46200 and MATH 56200
- *Topology: MATH 32101 and MATH 57100
- Probability and Statistics: Two statistical-type courses at the STAT 35000 level or higher, with advisor's approval
- Modeling: MATH 41700 and MATH 42600
- Numerical Analysis: MATH 41400 and CSCI 51500
- Scientific computing: CSCI 47500 and 47600

1 Students are generally allowed to select only one of these two course sequences.

Pure Mathematics Option Sample Program

Freshman Year

First Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 16500 Analytic Geometry and Calculus I</td>
<td>4</td>
</tr>
<tr>
<td>MATH 17100 Multidimensional Mathematics</td>
<td>3</td>
</tr>
<tr>
<td>SCI-I120 Windows on Science</td>
<td>1</td>
</tr>
<tr>
<td>ENG-W131 Elementary Composition I</td>
<td>3</td>
</tr>
<tr>
<td>Physical or biological science</td>
<td>4</td>
</tr>
<tr>
<td>Total</td>
<td>15</td>
</tr>
</tbody>
</table>

Second Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 16600 Analytic Geometry and Calculus II</td>
<td>4</td>
</tr>
<tr>
<td>CSCI 23000 Computing I</td>
<td>4</td>
</tr>
<tr>
<td>COMM-R110 Fundamentals of Speech Communication</td>
<td>3</td>
</tr>
<tr>
<td>Physical or biological science</td>
<td>3</td>
</tr>
<tr>
<td>Free elective</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>15</td>
</tr>
</tbody>
</table>

Sophomore Year

Third Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 26100 Multivariate Calculus</td>
<td>4</td>
</tr>
<tr>
<td>HIST-H114 History of Western Civilization II</td>
<td>3</td>
</tr>
<tr>
<td>Second composition course</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 15200 Mechanics</td>
<td>4</td>
</tr>
<tr>
<td>Total</td>
<td>17</td>
</tr>
</tbody>
</table>

Fourth Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 26600 Ordinary Differential Equations</td>
<td>3</td>
</tr>
<tr>
<td>MATH 35100 Elementary Linear Algebra</td>
<td>3</td>
</tr>
<tr>
<td>Physical or biological science</td>
<td>3</td>
</tr>
<tr>
<td>Humanities-List H</td>
<td>3</td>
</tr>
<tr>
<td>Free elective</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>15</td>
</tr>
</tbody>
</table>

Junior Year

Fifth Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 44400 Foundations of Analysis I</td>
<td>3</td>
</tr>
<tr>
<td>MATH or STAT Elective</td>
<td>3</td>
</tr>
<tr>
<td>Foreign language</td>
<td>5</td>
</tr>
<tr>
<td>Social Sciences-List S</td>
<td>3</td>
</tr>
<tr>
<td>Free elective</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>17</td>
</tr>
</tbody>
</table>

Sixth Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 44500 Foundations of Analysis II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 51000 Vector Calculus</td>
<td>3</td>
</tr>
<tr>
<td>Comparative World Cultures-List C</td>
<td>3</td>
</tr>
<tr>
<td>Free electives</td>
<td>6</td>
</tr>
<tr>
<td>Total</td>
<td>15</td>
</tr>
</tbody>
</table>

Senior Year

Seventh Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 45300 Beginning Abstract Algebra</td>
<td>3</td>
</tr>
<tr>
<td>MATH or STAT elective</td>
<td>3</td>
</tr>
<tr>
<td>Free electives</td>
<td>8</td>
</tr>
<tr>
<td>Total</td>
<td>14</td>
</tr>
</tbody>
</table>

Eighth Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH or STAT electives</td>
<td>6</td>
</tr>
<tr>
<td>MATH 49200 Capstone Experience</td>
<td>2</td>
</tr>
<tr>
<td>Free electives</td>
<td>6</td>
</tr>
</tbody>
</table>
Applied Mathematics Option

Graduates with training in applied mathematics are employed in business, industry, and government. They would probably work as part of a team and would often need to communicate mathematical ideas to persons trained in other subjects. In many instances, they would need to formulate problems for solution on a computer and interpret the answers. Thus, besides a fundamental knowledge of mathematics, a knowledge of what computers can do is essential. This option is also good preparation for graduate study in applied mathematics, computer science, statistics, and engineering.

Courses taken to satisfy the Area IIIC requirements must include PHYS 15200 and PHYS 25100 (or more advanced physics courses).

The Area IV major requirements are as follows:

1. Core curriculum: MATH 16500, MATH 16600, MATH 17100, MATH 26100, MATH 26600, and MATH 35100 (or MATH 51100)
2. MATH 41400 Numerical Methods or CSCI 47500 and CSCI 47600 Scientific Computing (6 cr.)
3. MATH 51000 Vector Calculus or MATH 46200 Elementary Differential Geometry
4. Mathematical modeling: MATH 42600 Introduction to Applied Mathematics or MATH 41700 Modeling and Game Theory
5. MATH 44400 Foundations of Analysis I
6. Twelve (12) additional credit hours selected from MATH 27600 and mathematics and statistics courses at the 300 level or above. Courses in computer science or courses in other departments of the School of Science that have appropriate mathematical content may be selected with the approval of the advisor. Normally, no more than 6 credit hours outside of mathematics and statistics will be approved.
7. The 45 credit hours of courses required above must include at least 6 credit hours in each of two of the course sequences listed below. Students planning on attending graduate school in mathematics are advised to take MATH 44500.
8. Minimum two (2) credit hours of MATH 49200 Capstone Experience

Course Sequences
Two course sequences (each course 3 credit hours) are required. No overlaps are allowed.

- Differential Equations: MATH 52000 and MATH 52200
- Foundations of Analysis: MATH 44400 and MATH 44500
- Complex Analysis and Differential Equations: MATH 42500 and MATH 52000
- Abstract Algebra: MATH 45300 and MATH 45400
- Algebra and Number Theory: MATH 45600 and MATH 45300
- Linear Algebra: MATH 35100 and MATH 35300
- Differential Geometry: MATH 46200 and MATH 56200
- Probability and Statistics: Two statistical-type courses at the STAT 35000 level or higher, with advisor's approval
- Modeling: MATH 41700 and MATH 42600
- Numerical Analysis: MATH 41400 and CSCI 51500
- Scientific computing: CSCI 47500 and 476002
- Theoretical computer science: CSCI 34000 and 470002

Students are generally allowed to select only one of these two course sequences.

Applied Mathematics Option Sample Program (124 credits required)

Freshman Year

<table>
<thead>
<tr>
<th>Course Sequence</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Semester</td>
<td></td>
</tr>
<tr>
<td>MATH 16500 Analytic Geometry and Calculus I</td>
<td>4</td>
</tr>
<tr>
<td>MATH 17100 Multidimensional Mathematics</td>
<td>3</td>
</tr>
<tr>
<td>SCI-I20 Windows on Science</td>
<td>1</td>
</tr>
<tr>
<td>ENG-W131 Elementary Composition I</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>14</td>
</tr>
<tr>
<td>Second Semester</td>
<td></td>
</tr>
<tr>
<td>MATH 16600 Analytic Geometry and Calculus II</td>
<td>4</td>
</tr>
<tr>
<td>CSCI 23000 Computing I</td>
<td>4</td>
</tr>
<tr>
<td>COMM-R110 Fundamentals of Speech Communication</td>
<td>3</td>
</tr>
<tr>
<td>Second composition course</td>
<td>3</td>
</tr>
<tr>
<td>HIST-H114 History of Western Civilization II</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>17</td>
</tr>
</tbody>
</table>

Sophomore Year

<table>
<thead>
<tr>
<th>Course Sequence</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Third Semester</td>
<td></td>
</tr>
<tr>
<td>MATH 26100 Multivariate Calculus</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 15200 Mechanics</td>
<td>4</td>
</tr>
<tr>
<td>Humanities-List H</td>
<td>3</td>
</tr>
<tr>
<td>Free electives</td>
<td>6</td>
</tr>
<tr>
<td>Total</td>
<td>17</td>
</tr>
<tr>
<td>Fourth Semester</td>
<td></td>
</tr>
<tr>
<td>MATH 26600 Ordinary Differential Equations</td>
<td>3</td>
</tr>
<tr>
<td>MATH 35100 Elementary Linear Algebra</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 25100 Heat, Electricity, and Optics</td>
<td>5</td>
</tr>
<tr>
<td>Free electives</td>
<td>6</td>
</tr>
<tr>
<td>Total</td>
<td>17</td>
</tr>
</tbody>
</table>
Junior Year

Fifth Semester
MATH 41400 Numerical Methods 3
PHYS 31000 Intermediate Mechanics 4
MATH or STAT Elective 3
Social Sciences-List S 3
Foreign language 3
Total 16

Sixth Semester
MATH 42600 Introduction to Applied Mathematics and Modeling or MATH 41700 Advanced Discrete Mathematics 3
MATH 51000 Vector Calculus 3
PHYS 34200 Modern Physics 3
Comparative World Cultures-List C 3
Foreign language 3
Total 15

Senior Year

Seventh Semester
MATH 44400 Foundations of Analysis I 3
MATH or STAT Elective 3
Free Electives 8
Total 14

Eighth Semester
MATH 49200 Capstone Experience 2
MATH or STAT Electives 6
Free electives 6
CAND 99100 Candidate for Graduation 0
Total 14

Actuarial Science Option

The Actuarial Science Option for mathematics majors will provide students with the strong background in mathematics, statistics, and economics necessary to analyze financial risks. This concentration aims to prepare students for the first three actuarial examinations administered by the professional actuarial organizations. The secondary area of concentration for students in this option is fulfilled by required courses in business and economics.

Actuarial science deals with the analysis of financial consequences of risk. Actuaries are highly trained professionals, well versed in mathematical, statistical, and economic techniques that enable them to evaluate financial risk of uncertain future events, especially those pertaining to health care, insurance, and pension plans. Actuaries answer risk-related questions by developing, implementing, and interpreting sophisticated mathematical models.

The Area IV major requirements are as follows:
1. Core Curriculum: MATH 16500, MATH 16600, MATH 17100, MATH 26100, MATH 26600, and MATH 35100 (or MATH 51100)
2. ECON-S201, ECON-E202 or ECON-S202, ECON-E305, ECON-E321, ECON-E322
3. BUS-A200, BUS-F300, BUS-F305
4. MATH 37300 Mathematical Finance
5. Mathematical Modeling: MATH 42600 Introduction to Applied Mathematics or MATH 41700 Modeling and Game Theory
6. STAT 41600 Probability and STAT 41700 Statistical Theory
7. Actuarial Models: STAT 47200 / STAT 47300
8. Two (2)-credit hour or 3-credit hour STAT elective at the 300 level or above (not STAT 30100, 30200, or 31100) Suggested course: STAT 37100 (Prep for Actuarial Exam 1)
9. Three (3) credit hour MATH or STAT course selected from MATH 27600 and mathematics and statistics courses at the 300 level or above (not STAT 30100, 30200, or 31100). Suggested course: STAT 35000 Introduction to Statistics
10. Two (2) or three (3) credit hours of MATH 49200 Capstone Experience

Actuarial Science Option Sample Program (124 credits required)

Freshman Year

First Semester
MATH 16500 Analytic Geometry and Calculus I 4
MATH 17100 Multidimensional Mathematics 3
SCI-I120 Windows on Science 1
ENG-W131 Elementary Composition I 3
HIST-H114 History of Western Civilization II 3
Total 16

Second Semester
MATH 16600 Analytic Geometry and Calculus II 4
CSCI 23000 Computing I 4
COMM-R110 Fundamentals of Speech Communication 3
HIST-H114 History of Western Civilization II 3
Total 17

Sophomore Year

Third Semester
MATH 26100 Multivariate Calculus 4
Secondary School Teaching Option

Students who wish to teach in secondary schools must meet the requirements for teacher certification in the state in which they expect to teach. Interested persons can obtain these requirements by writing to the Department of Public Instruction, Certification Office, in the capital city of any state.

To satisfy Indiana law, a student should have 40 credit hours in general education courses and a specified core of professional education courses as part of the requirement for a teaching license. Students should be sure to see an advisor to ensure that these hours are properly distributed and that the professional education requirements are met.

Courses taken to satisfy the Area IIIC requirements must include either PHYS 21800 or PHYS 15200 (or a more advanced physics course).

The Area IV major requirements are as follows:

1. Core curriculum: MATH 16500, MATH 16600, MATH 17100, MATH 26100, MATH 26600, and MATH 35100 (or MATH 51100)
2. MATH 27600 Discrete Math
3. MATH 30000 Logic and the Foundations of Algebra
4. MATH 45300 Abstract Algebra
5. MATH 46300 Intermediate Euclidean Geometry for Secondary Teachers
6. Probability and statistics: STAT 31100 or 35000 or 41600 or 51100
7. MATH 58300 History of Elementary Mathematics

Secondary School Teaching Option Sample Program

(124 credits required)

Freshman Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAT 35000 Introduction to Statistics</td>
<td>3</td>
</tr>
<tr>
<td>ECON-S201 Introduction to Microeconomics: Honors</td>
<td>3</td>
</tr>
<tr>
<td>BUS-A200 Foundations of Accounting</td>
<td>3</td>
</tr>
<tr>
<td>Physical or Biological Science Elective</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>16</td>
</tr>
</tbody>
</table>

Fourth Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 26600 Ordinary Differential Equations</td>
<td>3</td>
</tr>
<tr>
<td>MATH 35100 Elementary Linear Algebra</td>
<td>3</td>
</tr>
<tr>
<td>ECON-E202 or ECON-S202 Introduction to Macroeconomics</td>
<td>3</td>
</tr>
<tr>
<td>Humanities-List H</td>
<td>3</td>
</tr>
<tr>
<td>Free elective</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>15</td>
</tr>
</tbody>
</table>

Junior Year

Fifth Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAT 41600 Probability</td>
<td>3</td>
</tr>
<tr>
<td>BUS-F300 Introduction to Financial Management</td>
<td>3</td>
</tr>
<tr>
<td>ECON-E322 Intermediate Macroeconomic Theory</td>
<td>3</td>
</tr>
<tr>
<td>Comparative World Cultures-List C</td>
<td>3</td>
</tr>
<tr>
<td>Physical or biological science elective</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>15</td>
</tr>
</tbody>
</table>

Sixth Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAT 41700 Statistical Theory</td>
<td>3</td>
</tr>
<tr>
<td>MATH 37300 Mathematical Finance</td>
<td>3</td>
</tr>
<tr>
<td>STAT 37100 Prep for Actuarial Exam 1</td>
<td>2</td>
</tr>
<tr>
<td>BUS-F305 Intermediate Corporate Finance</td>
<td>3</td>
</tr>
<tr>
<td>Foreign language</td>
<td>5</td>
</tr>
<tr>
<td>Total</td>
<td>16</td>
</tr>
</tbody>
</table>

Senior Year

Seventh Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAT 47200 Actuarial Models I</td>
<td>3</td>
</tr>
<tr>
<td>ECON-E305 Money and Banking</td>
<td>3</td>
</tr>
<tr>
<td>Physical or biological science elective</td>
<td>3</td>
</tr>
<tr>
<td>Free electives</td>
<td>6</td>
</tr>
<tr>
<td>Total</td>
<td>15</td>
</tr>
</tbody>
</table>

Eighth Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAT 47300 Actuarial Models II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 42600 Introduction to Applied Mathematics and Modeling or MATH 41700 Modeling and Game Theory</td>
<td>3</td>
</tr>
<tr>
<td>ECON-E321 Intermediate Microeconomic Theory</td>
<td>3</td>
</tr>
<tr>
<td>MATH 49200 Capstone Experience</td>
<td>2</td>
</tr>
<tr>
<td>Free elective</td>
<td>3</td>
</tr>
<tr>
<td>CAND 99100 Candidate for Graduation</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>14</td>
</tr>
</tbody>
</table>

Eighth Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAT 47300 Actuarial Models II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 42600 Introduction to Applied Mathematics and Modeling or MATH 41700 Modeling and Game Theory</td>
<td>3</td>
</tr>
<tr>
<td>ECON-E321 Intermediate Microeconomic Theory</td>
<td>3</td>
</tr>
<tr>
<td>MATH 49200 Capstone Experience</td>
<td>2</td>
</tr>
<tr>
<td>Free elective</td>
<td>3</td>
</tr>
<tr>
<td>CAND 99100 Candidate for Graduation</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>14</td>
</tr>
</tbody>
</table>
PSY-B104 Psychology as a Social Science 3
Total 14

Second Semester
MATH 16600 Analytic Geometry and Calculus II 4
MATH 27600 Discrete Mathematics 3
COMM-R110 Fundamentals of Speech Communication 3
Second composition course 3
HIST-H114 History of Western Civilization II 3
Total 16

Sophomore Year

Third Semester
MATH 26100 Multivariate Calculus 4
MATH 30000 Logic and the Foundations of Algebra 3
EDUC-H341 American Culture and Education 3
Foreign language 5
Humanities-List H 3
Total 18

Fourth Semester
MATH 26600 Ordinary Differential Equations 3
MATH 58300 History of Elementary Mathematics 3
CSCI 23000 Computing I 4
Comparative World Cultures-List C 3
PHYS 21800 General Physics I 4
Total 17

Junior Year

Fifth Semester
MATH 35100 Elementary Linear Algebra 3
EDUC-M322 Diversity/Learning: Reaching Every Adolescent + Field Experience 6 1
Physical or Biological Science with Lab 4
Total 14

Sixth Semester
MATH 46300 Intermediate Euclidean Geometry for Secondary Teachers 3
Physical or biological science 3
Total 17

Senior Year

Seventh Semester
MATH 45300 Abstract Algebra 3
STAT 35000 Introduction to Statistics 3
EDUC-S430 Teaching/Learning in the High School + Field Experience 3 1
Physical or biological science 3
Total 13

Eighth Semester
EDUC-M451 Student Teaching: Jr High/Middle School 8
EDUC-M480 Student Teaching in the Secondary School 8
CAND 99100 Candidate for Graduation 0
Total 16

Minor in the Mathematical Sciences
An undergraduate minor in mathematics is useful in many fields. A scientist or engineer may need knowledge of differential equations and linear algebra, while someone in business or a social science may need a background in probability or statistics.

Requirements
1. The calculus sequence MATH 16500, MATH 16600, MATH 17100, and MATH 26100 (15 cr.)
2. Two additional courses selected from mathematics courses numbered MATH 26600 or higher or from statistics courses numbered STAT 31100 or higher
3. Nine (9) credit hours of the minor must be completed at IUPUI.
4. The grade in each course submitted for the minor must be C (2.0) or higher.

Correspondence courses may not be used to fulfill requirements for the minor.

Graduate Programs
The Department of Mathematical Sciences offers graduate training leading to the Purdue University Master of Science degree in Mathematics, with concentrations in pure mathematics, applied mathematics, math education, and applied statistics. By arrangement with Purdue
University, West Lafayette, qualified students may also pursue a Ph.D. in Mathematics. Together with the Division of Biostatistics in the Indiana University School of Medicine, the department also administers and offers an Indiana University Ph.D. in Biostatistics. Requirements for both Ph.D. programs are completed entirely on the IUPUI campus. The M.S. degree requires two years of full-time study, and the Ph.D. typically requires two to three additional years of full-time study.

Admission Requirements

Students entering a graduate program in mathematics should have completed an undergraduate program containing as many courses as possible in abstract algebra, linear algebra, advanced calculus, differential equations, logic and foundations, and probability.

Students entering the graduate program in applied mathematics should have completed an undergraduate program in mathematics or in engineering or physical sciences that was strongly oriented toward mathematics.

Students entering the master’s program in applied statistics must have a bachelor’s degree from an accredited institution. The minimal mathematics requirement for admission to this program includes an undergraduate sequence in univariate and multivariate calculus (equivalent to MATH 16500, MATH 16600, MATH 26100) and one course in linear algebra (equivalent to MATH 35100 or MATH 51100). Prospective applicants who do not have this background must acquire it prior to admission to the program.

Students entering the graduate program in biostatistics must have a suitable bachelor’s or master’s degree from an accredited institution and shows promise for successfully completing all the degree requirements. In addition to satisfying general Indiana University Graduate School requirements for admission, applicants must have at least a B (3.00 GPA) in courses required as prerequisites for the program. The minimal mathematics background consists of an undergraduate course sequence in univariate and multivariate calculus (equivalent to MATH 16500, MATH 16600 and MATH 26100) and a course in linear algebra (equivalent to MATH 35100 or MATH 51100). In addition, applicants should have had a calculus-based undergraduate level course in probability or statistics. Prospective applicants who do not have this background must acquire it prior to admission to the program.

Application for Admission

Students who wish to pursue an advanced degree in the Department of Mathematical Sciences should complete an online application available from the department’s Web site at www.math.iupui.edu. For Ph.D. mathematics applicants, the GRE general and mathematics subject test scores are required. For PhD biostatistics applicants, the GRE general test is required. Students for whom English is not their native language and who have not completed a post-secondary degree program from an English-speaking university will be required to take designated courses in English while pursuing their graduate studies.

Financial support is available to qualified students in the form of university fellowships, graduate teaching assistantships, and research assistantships. Additional summer appointments may be available for students whose performance in course work and assistantship duties is satisfactory.

English Requirements

All advanced degree candidates are required to demonstrate acceptable proficiency in English composition.

Students for whom English is not their native language and who have not completed a bachelor’s or master’s degree program from an English-speaking university must take the EAP exam administered by the IUPUI English for Academic Purposes program. Students not scoring high enough will be required to take designated courses in English while pursuing their graduate studies.

Master of Science (Pure and Applied Mathematics Concentrations)

A minimum of 30 credit hours of course work is required for an M.S. degree. Course grades must be A or B with the possible exception of at most two grades of C. Neither a thesis nor a comprehensive examination is required. Several core courses are specific to an M.S. plan of study and vary according to the student’s interest in (a) pure mathematics with a Ph.D. objective, (b) pure mathematics without a Ph.D. objective, (c) applied mathematics with a Ph.D. objective, or (d) applied mathematics without a Ph.D. objective. The remaining courses are selected by the student and his or her advisory committee.

Master of Science (Mathematics Education Concentration)

This non-thesis program requires a minimum of 30 credit hours of coursework and is tailored for secondary school teachers and students who are preparing to become secondary school teachers. Core requirements include a course in geometry, a course in algebra, a course in analysis, a course in modeling/differential equations, and a course in probability. (See the Department of Mathematical Sciences for a more complete description of this program.) Course grades must be A or B with the possible exception of at most two grades of C.

Master of Science (Applied Statistics Concentration)

The Master of Science degree with a concentration in Applied Statistics consists of a minimum of 30 credit hours. Course grades must be A or B with the possible exception of at most two grades of C. Candidates for
this degree may choose either the thesis option or the non-thesis option. Both options require 15 credit hours in the core curriculum consisting of STAT 51200, STAT 51400, STAT 51900, STAT 52400, and STAT 52800. All degree candidates must take the two-course sequence in probability and mathematical statistics (STAT 51900, STAT 52800). A combined written and oral final examination is required.

The non-thesis option consists of 15 credit hours beyond the core curriculum, at least 9 of which must be statistics (STAT) courses. The remaining courses may be taken in mathematics or in areas relevant to statistical applications, subject to approval of the academic advisor.

The thesis option requires a thesis worth 6 credit hours on a topic approved by the student’s academic advisor. At least 6 of the remaining 9 credit hours must be taken in statistics or in a subject related to statistical applications that have been approved by the advisor. An oral defense of the thesis is required.

Doctor of Philosophy (Mathematics)

By arrangement with Purdue University, West Lafayette, qualified students may pursue a Ph.D. in Mathematics, with all requirements completed on the IUPUI campus. To be admitted to candidacy for the Ph.D. degree, the student must fulfill the following requirements.

Requirements

• The student must pass an initial qualifying examination on the five core courses: STAT 51900, STAT 52500, STAT 52800, STAT 53600, and BIOS-SS46.
• The student must complete at least 48 credit hours of formal coursework, consisting of 36 credit hours of required courses and additional 12 credit hours in elective statistics/biostatistics courses of which six credit hours must be at the 600 level and above. An additional 42 credit hours are required and will consist of coursework in a minor area (9 to 15 credits), further elective courses, independent studies, and directed Ph.D. dissertation research.
• The student must pass a preliminary examination, which consists of an oral presentation on an advanced research topic.

A candidate will be recommended to the faculty to receive the Ph.D. degree after a dissertation, submitted in final form, has been accepted by the advisory committee and successfully defended before an open colloquium or seminar.

The department has set time limits for completion of the Ph.D. degree.

Department of Physics

IUPUI
Science Building, LD 154
402 N. Blackford Street
Indianapolis, IN 46202-3273
Phone: (317) 274-6900; fax: (317) 274-2393
www.physics.iupui.edu

• Professors Kemple, Ou, Rao, Sukhatme (Executive Vice Chancellor and Dean of the Faculties), Vemuri
• Professors Emeriti Kaplan, Meiere, Novak, Vasavada
• Associate Professor Emeritus Kleinhans
• Associate Professors Decca, Gavin (Chair), Wassall
• Assistant Professors Betancourt, Cheng, Joglekar, Petracech, Rader
• Lecturers Rhoads, Ross, Woodahl
• Departmental Academic Advisors Ross, Woodahl

Physics is the study of matter and energy, from the smallest scale, as in the study of elementary particles, to the largest, as in the study of the formation and evolution of stars and galaxies. In this sense, physics is the science that underlies all of the other sciences. In principle, as well as in practice, physics is involved in virtually all scientific and technical endeavors (e.g., biophysics, geophysics, health physics, etc.).

Physicists tend to view themselves primarily as solvers of problems, especially problems that can be expressed in mathematical terms. Physics students are trained to solve complex problems by learning to analyze complex relations in mathematical terms, often with the help of today’s fast computers. Because of this broadly based and flexible problem-solving background, physics graduates...
find employment in a variety of fields, many of which are not directly associated with physics.

The Department of Physics offers a program leading to a Bachelor of Science degree at Purdue University. In addition, the department offers courses in physics and astronomy for nonmajors. The department also offers graduate courses that lead to a Purdue Master of Science degree. Qualified students may be authorized to pursue the Ph.D. degree in physics at IUPUI in areas where a program has been arranged with Purdue, West Lafayette.

Members of the department conduct research in several disciplines of physics and participate in joint projects with a number of other research groups, such as the Indianapolis Center for Advanced Research and the IU School of Medicine. Student participation in these projects is welcomed and encouraged.

Students majoring in physics consolidate their undergraduate studies by putting what they have learned to use in a capstone experience in one of the department’s research laboratories. Each student joins a faculty member in a project that provides experience in a professional setting. The student must obtain the approval of a faculty member and register for PHYS 49000.

Guide to Service Courses

Each student should consult an advisor in the department in which a degree is sought to determine which service course is appropriate. A general guide to the schools served by these courses is as follows:

- AST-A100 / AST-A105: General science courses for students in all majors.
- AST-A130: Focused short courses for students in all majors.
- PHYS 14000: Focused short courses for students in all majors.
- PHYS 10000: For students in allied health, business, and liberal arts (a traditional survey course).
- PHYS 21800 / PHYS 21900: A noncalculus sequence for technology students.
- PHYS-P201 / PHYS-P202: A noncalculus sequence for preprofessional students.
- PHYS 15200 / PHYS 25100 / PHYS 34200: For students in science and engineering requiring a calculus-based sequence.
- Bachelor of Science
- Bachelor of Science-Biophysics Option
- Plan of Study
- Graduate Program

Bachelor of Science

Degree Requirements

First-Year Experience Course

Beginning freshmen and transfer students with fewer than 18 credit hours are required to take SCI-I120 Windows on Science (1 cr.) or an equivalent first-year experience course.

Area I English Composition and Communication Skills

Minimum requirements for the School of Science are given in this bulletin (see the School of Science requirements under “Undergraduate Programs”). The second semester of English composition may be satisfied only with ENG-W132 (or ENG-W150), ENG-W231, ENG-W250, ENG-W290, ENG-W331, ENG-W350, TCM 22000, or TCM 32000.

Area II Foreign Language

No foreign language proficiency is required for a Bachelor of Science degree.

Area IIIA Humanities, Social Sciences, and Comparative World Cultures (12 cr.)

HIST-H114 Western Civilization II or HIST-H109 Perspectives on the World: 1800-Present

List H course: Choose one course (3 cr.) from this list. The list of course choices is located under the School of Science requirements “Undergraduate Programs” in this bulletin.

List S course: Choose one course (3cr.) from this list. The list of course choices is located under the School of Science requirements “Undergraduate Programs” in this bulletin.

List C course: Choose one course (3 cr.) from this list. The list of course choices is located under the School of Science requirements “Undergraduate Programs” in this bulletin.

Area IIIB Junior/Senior Integrator

The School of Science has indefinitely suspended the Junior/Senior Integrator requirement. The Department of Physics has chosen to allow physics majors to satisfy the three credit hours with a course decided upon in consultation with their physics advisor. This course might be outside physics, but can be satisfied with a physics course. For additional information, please consult your academic advisor.

Area IIIC Physical and Biological Sciences Minimum requirements for the School of Science are given in this bulletin (see the School of Science requirements under “Undergraduate Programs”). Courses must include CHEM-C105 / CHEM-C125 and CHEM-C106 / CHEM-C126 with laboratory or their approved equivalent.

Area IIID Mathematical Sciences

Minimum requirements for the School of Science are given in this bulletin (see the School of Science requirements under “Undergraduate Programs”). Twenty-four (24) credit hours of courses in mathematics are required, which must include MATH 16500, MATH 16600, MATH 17100, MATH 26100 and MATH 26600.

The computer science requirement of the School of Science may be satisfied with CSCI 23000, CSCI-N305, CSCI-N331, or any higher-level CSCI course.

Note: Computer Science CSCI-N241 and CSCI-N299 do not count in Area IIID, but may count as a general elective.

Area IV Physics Concentration

The Department of Physics offers four options for students pursuing the Bachelor of Science degree: a traditional physics program; a biophysics option; a program designed for students planning a career in physics teaching; an accelerated program with a B.S. in physics and a B.S.
in electrical engineering; and an accelerated program known as the BPMME program because students earn both a bachelor’s in physics and a master’s in mechanical engineering.

Students pursuing the traditional program must complete PHYS 15200, PHYS 25100, PHYS 30000, PHYS 31000, PHYS 33000, PHYS 34200, PHYS 35300, PHYS 40000, PHYS 40100, PHYS 41600, PHYS 41800, PHYS 43000, and PHYS 49000. These students must complete 6 hours of mathematics above the level of MATH 26600 in courses approved by the Department of Physics.

Students pursuing the biophysics option must complete: PHYS-P201 or PHYS 15200, PHYS-P202 or PHYS 25100; two of the following three: PHYS PHYS 30000, PHYS 31000, PHYS 33000; Complete PHYS 34200, 35300, PHYS 44200, and PHYS 49000 (Biophysics Capstone). In addition, a minimum of 15 credit hours of biology and 23 credit hours of chemistry is required.

Students pursuing the teaching option must complete: PHYS 15200, PHYS 25100, PHYS 30000, PHYS 31000, PHYS 33000, PHYS 34200, PHYS 35300, and PHYS 49000. The Department of Physics may substitute other science courses for the 400-level courses and recommend education courses in order to meet teacher certification requirements. These students must complete 6 hours of mathematics above the level of MATH 26600 in courses approved by the Department of Physics.

Students pursuing the program in physics and mechanical engineering must complete: PHYS 15200, PHYS 25100, PHYS 31000, PHYS 33000, PHYS 34200, PHYS 35300, and PHYS 49000. The Department of Physics may substitute other science courses for the 400-level courses and recommend education courses in order to meet teacher certification requirements. These students must complete 3 hours of mathematics above the level of MATH 26600 in courses approved by the Department of Physics. Students in this program must satisfy additional requirements specified by the Department of Mechanical Engineering.

In addition to the above requirements, courses taken outside the Schools of Science and Liberal Arts must receive departmental approval. No more than 6 credit hours of clinical, athletic, or performing arts courses will be approved. See the departmental advisor for details.

Minor in Physics

The Department of Physics offers an undergraduate minor in physics with the following requirements:

- The introductory physics sequence: PHYS 15200 and PHYS 25100.
- Modern Physics: PHYS 34200.
- Six (6) more credit hours chosen from PHYS 30000, PHYS 31000, PHYS 33000, PHYS 40000, PHYS 40100, or PHYS 44200.
- The grade for each course submitted for the minor must be a C (2.0) or higher.

Correspondence courses may not be used to fulfill requirements for the minor.

Biophysics Option

For students who desire an interdisciplinary knowledge of physics and biology pursuant to a career in medicine or biophysics. The program meets typical medical school entrance requirements.

Degree Requirements

First-Year Experience Course

Beginning freshmen and transfer students with fewer than 18 credit hours are required to take SCI-I120 Windows on Science (1 cr.) or an equivalent first-year experience course.

Area I English Composition and Communication Skills

Minimum requirements for the School of Science are given in this bulletin (see the School of Science requirements under “Undergraduate Programs”). The second semester of English composition may be satisfied only with ENG-W132 (or ENG-W150), ENG-W231, ENG-W250, ENG-W290, ENG-W331, ENG-W350, TCM 22000, or TCM 32000.

Area II Foreign Language

No foreign language proficiency is required for a Bachelor of Science degree.

Area IIIA Humanities, Social Sciences, and Comparative World Cultures (12 cr.)

HIST-H114 Western Civilization II or HIST-H109 Perspectives on the World: 1800-Present

List H course: Choose one course (3 cr.) from this list. The list of course choices is located under the School of Science requirements “Undergraduate Programs” in this bulletin.

List S course: Choose one course (3 cr.) from this list. The list of course choices is located under the School of Science requirements “Undergraduate Programs” in this bulletin.

Area IIIB Junior/Senior Integrator

The School of Science has indefinitely suspended the Junior/Senior Integrator requirement. The Department of Physics has chosen to allow physics majors to satisfy the three credit hours with a course decided upon in consultation with their physics advisor. This course might be outside physics, but can be satisfied with a physics course. For additional information, please consult your academic advisor.

Area IIIC Physical and Biological Sciences

See requirements listed below under Area IV Physics (Biophysics) Concentration Requirements.

Area IIID Mathematical Sciences

Eighteen (18) credit hours of courses in mathematics are required, which must include MATH 16500, MATH 16600, MATH 17100, MATH 26100, and MATH 26600.

The computer science requirement of the School of Science may be satisfied with CSCI 23000, CSCI-N305, CSCI-N331, or any higher-level CSCI course.

Note: Computer Science CSCI-N241 and CSCI-N299 do not count in Area IIID, but may count as a general elective.

Area IV Physics (Biophysics) Concentration Requirements

Physics: A minimum of 26 hours of physics is required.
• PHYS-P201 or PHYS 15200 and PHYS-P202 or PHYS 25100 (Introductory Physics).
• Two of the following three courses: PHYS 30000 Intro to Elementary Mathematical Physics, PHYS 31000 Intermediate Mechanics, PHYS 33000 Intermediate Electricity and Magnetism.
• PHYS 34200 Modern Physics and PHYS 35300 Electronics Laboratory, PHYS 44200 Quantum Mechanics, and PHYS 49000 Physics (Biophysics) Capstone experience (3 cr.)

Biology: A minimum of 15 credit hours of biology is required.

• General Biology: BIOL-K101 and BIOL-K103.
• Five additional hours of biology drawn from BIOL-K324 / BIOL-K325 Cell Biology and Lab, or BIOL-K356 / BIOL-K357 Microbiology and Lab, or BIOL-K483 Biological Chemistry and BIOL-K484 Cellular Biochemistry.

Chemistry: A minimum of 23 credit hours of chemistry is required.

• General Chemistry: CHEM-C105 / CHEM-C125 and CHEM-C106 / CHEM-C126.
• Physical Chemistry: CHEM-C360 or CHEM-C361.

In addition to the above requirements, courses taken outside the Schools of Science and Liberal Arts must receive departmental approval. No more than 6 credit hours of clinical, athletic, or performing arts courses will be approved. See the departmental advisor for details.

Plans of Study

Bachelor of Science Sample Program (124 cr. required)

The Department of Physics recommends the following sample program leading to the degree of Bachelor of Science.

Freshman Year

<table>
<thead>
<tr>
<th>First Semester</th>
<th>3</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM-C105 Principles of Chemistry I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHEM-C125 Experimental Chemistry I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH 16500 Analytic Geometry and Calculus I</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>MATH 17100 Multidimensional Mathematics</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>SCI-I120 Windows on Science</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>ENG-W131 Elementary Composition I</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Second Semester</th>
<th>4</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 15200 Mechanics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHEM-C106 Principles of Chemistry II</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHEM-C126 Experimental Chemistry II</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>MATH 16600 Analytic Geometry and Calculus II</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Second Composition Course</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>

Sophomore Year

<table>
<thead>
<tr>
<th>Third Semester</th>
<th>5</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 25100 Heat Electricity and Optics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH 26100 Multivariate Calculus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSCI course</td>
<td>3-4</td>
<td></td>
</tr>
<tr>
<td>HIST-H114 History of Western Civilization II or HIST-H109 Perspectives on the World: 1800 to Present</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>15-16</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fourth Semester</th>
<th>3</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 30000 Mathematical Physics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHYS 34200 Modern Physics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH 26600 Ordinary Differential Equations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMM-R110 Fundamentals</td>
<td></td>
<td></td>
</tr>
<tr>
<td>One course from List H, S, or C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

Junior Year

<table>
<thead>
<tr>
<th>Fifth Semester</th>
<th>4</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 31000 Intermediate Mechanics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH Course</td>
<td></td>
<td></td>
</tr>
<tr>
<td>One course from remaining two lists H, S, or C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>One course from the remaining List H, S, or C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elective</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sixth Semester</th>
<th>3</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 33000 Intermediate Electricity and Magnetism</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHYS 35300 Electronics Laboratory</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH Course</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physical or biological science elective</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Junior/Senior Integrator course</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elective</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>17</td>
<td></td>
</tr>
</tbody>
</table>
Senior Year

Seventh Semester
- PHYS 40000 Physical Optics \(3\)
- PHYS 40100 Physical Optics Laboratory \(2\)
- PHYS 44200 Quantum Mechanics \(3\)
- Physical or biological science elective \(3\)
- Elective \(3\)

Total \(14\)

Eighth Semester
- PHYS 41600 Thermal Physics \(3\)
- PHYS 49000 Capstone Experience \(1-3\)
- Electives \(8-10\)
- CAND 99100 Candidate for Graduation \(0\)

Total \(12-16\)

Biophysics Option Sample Program (minimum 124 cr. required)

Freshman Year
- PHYS-P201 General Physics I \(5\)
- CHEM-C105 Principles of Chemistry I \(3\)
- CHEM-C125 Experimental Chemistry I \(2\)
- MATH 16500 Analytic Geometry and Calculus I \(4\)
- SCI-I120 Windows on Science \(1\)

Total \(15\)

Second Semester
- PHYS-P202 General Physics II \(5\)
- CHEM-C106 Principles of Chemistry II \(3\)
- CHEM-C126 Experimental Chemistry II \(2\)
- MATH 16600 Analytic Geometry and Calculus II \(4\)
- MATH 17100 Multidimensional Mathematics \(3\)

Total \(17\)

Sophomore Year

Third Semester
- BIOL-K101 Concepts of Biology I \(5\)
- CHEM-C341 Organic Chemistry I \(3\)

Fourth Semester
- PHYS 30000 Mathematical Physics \(3\)
- BOIL-K103 Concepts of Biology II \(5\)
- CHEM-C342 Organic Chemistry II \(3\)
- CHEM-C344 Organic Chemistry Laboratory II \(2\)
- MATH 26600 Ordinary Differential Equations \(3\)

Total \(16\)

Junior Year

Sixth Semester
- PHYS 31000 Intermediate Mechanics \(4\)
- BIOL-K324 Cell Biology \(3\)
- BIOL-K325 Cell Biology Laboratory \(2\)
- CSCI Course \(3-4\)
- HIST-H114 History of Western Civilization II or HIST-H109 Perspectives on the World: 1800 to Present \(3\)

Total \(15-16\)

Seventh Semester
- PHYS 44200 Quantum Mechanics \(3\)
- PHYS 49000 Capstone Experience \(3\)
- One course from remaining two Lists H, S, or C \(3\)
- Junior/Senior Integrator course \(3\)

Total \(15\)
Bachelor of Science in Physics and Electrical Engineering Sample Program (139 cr. required)

The Department of Physics recommends the following sample program for students pursuing the program.

Freshman Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Semester</td>
<td>SCI-I120</td>
<td>Windows on Science or ENGR 19500 Introduction to the Engineering Profession</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>CHEM-C105</td>
<td>Principles of Chemistry I</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CHEM-C125</td>
<td>Experimental Chemistry I</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>MATH 16500</td>
<td>Analytic Geometry and Calculus I</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>MATH 17100</td>
<td>Multidimensional Mathematics</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>ENG-W131</td>
<td>Elementary Composition I</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>Second Semester</td>
<td>PHYS 15200</td>
<td>Mechanics</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>CHEM-C106</td>
<td>Principles of Chemistry II</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CHEM-C126</td>
<td>Experimental Chemistry II</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>MATH 16600</td>
<td>Analytic Geometry and Calculus II</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>One course from List H, S, or C</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>Summer 1 Term</td>
<td>HIST-H114</td>
<td>History of Western Civilization II or HIST-H109 Perspectives on the World: 1800 to Present</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Summer 2 Term</td>
<td>One course from remaining two lists H, S, or C</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Sophomore Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Third Semester</td>
<td>PHYS 25100</td>
<td>Heat Electricity and Optics</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>MATH 26100</td>
<td>Multivariate Calculus</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>CSCI 23000</td>
<td>Computing I</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>ECE 20100</td>
<td>Linear circuit analysis I</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>ECE 207</td>
<td>Electronic Measurement Techniques</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>ENGR 297</td>
<td>Computer Tools for Engineering</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>18</td>
</tr>
<tr>
<td>Fourth Semester</td>
<td>PHYS 34200</td>
<td>Modern Physics</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MATH 26600</td>
<td>Ordinary Differential Equations</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>ECE 20200</td>
<td>Circuit Analysis II</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>ECE 20800</td>
<td>Electronic Design and Devices lab</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>ECE 27000</td>
<td>Digital Logic with lab</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>ECE 25500</td>
<td>Introduction to Electronic Analysis and Design</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>17</td>
</tr>
<tr>
<td>Fifth Semester</td>
<td>PHYS 31000</td>
<td>Intermediate Mechanics</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>MATH 35100 or MATH 51100</td>
<td>Elementary Linear Algebra or Linear Algebra with Applications</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>ECE 30100</td>
<td>Signals and Systems</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>ECE 36200</td>
<td>Microprocessor Systems and Interfacing</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>One course from the remaining List H, S, or C</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>Sixth Semester</td>
<td>PHYS 33000</td>
<td>Intermediate Electricity and Magnetism</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>PHYS 35300</td>
<td>Electronics Laboratory</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>ECE 30200</td>
<td>Probabilistic Methods in Electrical Engineering</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>ECE 38200</td>
<td>Feedback Systems Analysis</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>TCM 32000</td>
<td>Written Communication in Science and Industry</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
General Education Elective & 3 &
Total & 16 &

<table>
<thead>
<tr>
<th>Senior Year</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Seventh Semester</td>
<td></td>
</tr>
<tr>
<td>PHYS 40000 Physical Optics</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 40100 Physical Optics Laboratory</td>
<td>2</td>
</tr>
<tr>
<td>PHYS 44200 Quantum Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>ECE 40000 Senior Seminar</td>
<td>1</td>
</tr>
<tr>
<td>ECE 44000 Introduction to Comm. Systems Analysis</td>
<td>4</td>
</tr>
<tr>
<td>ECE Elective</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>15</td>
</tr>
<tr>
<td>Eighth Semester</td>
<td></td>
</tr>
<tr>
<td>PHYS 41600 Thermal Physics</td>
<td>3</td>
</tr>
<tr>
<td>ECE 40100 Ethics</td>
<td>1</td>
</tr>
<tr>
<td>ECE 49200 Senior Design</td>
<td>3</td>
</tr>
<tr>
<td>ECE Elective</td>
<td>3</td>
</tr>
<tr>
<td>COMM-R110 Fundamentals of Speech Communication</td>
<td>3</td>
</tr>
<tr>
<td>CAND 99100 Candidate for Graduation</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>14</td>
</tr>
</tbody>
</table>

Bachelor of Science and Master of Science (BPMME) Sample Program (142 cr. required)

The Department of Physics recommends the following sample program for students pursuing the BPMME program.

<table>
<thead>
<tr>
<th>Freshman Year</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>First Semester</td>
<td></td>
</tr>
<tr>
<td>CHEM-C105 Principles of Chemistry I</td>
<td>3</td>
</tr>
<tr>
<td>CHEM-C125 Experimental Chemistry I</td>
<td>2</td>
</tr>
<tr>
<td>MATH 16500 Analytic Geometry and Calculus I</td>
<td>4</td>
</tr>
<tr>
<td>MATH 17100 Multidimensional Mathematics</td>
<td>3</td>
</tr>
<tr>
<td>SCI-I120 Windows on Science</td>
<td>1</td>
</tr>
<tr>
<td>ENG-W131 Elementary Composition I</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>16</td>
</tr>
<tr>
<td>Second Semester</td>
<td></td>
</tr>
<tr>
<td>PHYS 15200 Mechanics</td>
<td>4</td>
</tr>
<tr>
<td>CHEM-C106 Principles of Chemistry II</td>
<td>3</td>
</tr>
<tr>
<td>CHEM-C126 Experimental Chemistry II</td>
<td>2</td>
</tr>
<tr>
<td>MATH 16600 Analytic Geometry and Calculus II</td>
<td>4</td>
</tr>
<tr>
<td>Second composition course</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>16</td>
</tr>
<tr>
<td>Summer Term</td>
<td></td>
</tr>
<tr>
<td>Two courses from Lists H, S, or C</td>
<td>6</td>
</tr>
<tr>
<td>Total</td>
<td>6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sophomore Year</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Third Semester</td>
<td></td>
</tr>
<tr>
<td>PHYS 25100 Heat Electricity and Optics</td>
<td>5</td>
</tr>
<tr>
<td>MATH 26100 Multivariate Calculus</td>
<td>4</td>
</tr>
<tr>
<td>CSCI Course</td>
<td>4</td>
</tr>
<tr>
<td>HIST-H114 History of Western Civilization II or HIST-H109 Perspectives on the World: 1800 to Present</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>16</td>
</tr>
<tr>
<td>Fourth Semester</td>
<td></td>
</tr>
<tr>
<td>PHYS 33000 Intermediate Electricity and Magnetism</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 34200 Modern Physics</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 35300 Electronics Laboratory</td>
<td>2</td>
</tr>
<tr>
<td>MATH 26600 Ordinary Differential Equations</td>
<td>3</td>
</tr>
<tr>
<td>COMM R110 Fundamentals of Speech Communication</td>
<td>3</td>
</tr>
<tr>
<td>Elective</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>17</td>
</tr>
<tr>
<td>Summer Term</td>
<td></td>
</tr>
<tr>
<td>One course from the Lists H, S, or C</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Junior Year</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Fifth Semester</td>
<td></td>
</tr>
<tr>
<td>PHYS 31000 Intermediate Mechanics</td>
<td>4</td>
</tr>
<tr>
<td>ME 27200 Mechanics of Materials</td>
<td>4</td>
</tr>
<tr>
<td>ME 33000 Modeling and Analysis of Dynamic Systems</td>
<td>3</td>
</tr>
<tr>
<td>Physical or biological science elective</td>
<td>5</td>
</tr>
<tr>
<td>Total</td>
<td>16</td>
</tr>
<tr>
<td>Sixth Semester</td>
<td></td>
</tr>
<tr>
<td>PHYS 41600 Thermal Physics</td>
<td>3</td>
</tr>
<tr>
<td>ME 46200 Engineering Design</td>
<td>4</td>
</tr>
<tr>
<td>MATH Course</td>
<td>3</td>
</tr>
</tbody>
</table>
Graduate Programs

Graduate Program

The Department of Physics offers graduate programs leading to Purdue University Master of Science and Doctor of Philosophy degrees. For master’s degree students, both thesis and nonthesis options are available.

Admission Requirements

Students who seek enrollment in the physics graduate program should have a baccalaureate degree from an accredited institution and have a background in the usual undergraduate courses in physics, mathematics, and other sciences. An average grade point average of 3.0 (B) or higher in physics courses is expected. Graduates from related fields of study in pure and applied science or engineering may be accepted on a probationary basis until they have completed any necessary undergraduate courses in physics. The Graduate Record Examination (GRE) is normally expected of all applicants. The GRE physics test is recommended, but not required.

Transfer Credit

The Department of Physics will normally accept, from approved institutions, a maximum of 6 transfer hours of graduate credit that are in excess of undergraduate degree requirements.

Application for Admission

Application materials and information can be obtained online at www.physics.iupui.edu or by writing to the chairperson of the graduate committee, IUPUI Department of Physics, Science Building, LD 154, 402 N. Blackford Street, Indianapolis, IN 46202-3273; phone (317) 274-6900. While the application is being processed, it is possible to enter IUPUI as a temporary graduate student. Generally, only 12 hours of credit earned under this classification may be counted toward an advanced degree.

Financial Assistance

Most physics graduate students receive financial support. Types of support available include teaching and research assistantships, fellowships, and tuition remission.

Master of Science

The general requirements include admission to regular graduate status, completion of the English requirement, a passing score on the Physics Qualifying Examination, satisfactory completion of an approved plan of study, and 30 hours of graduate credit as outlined below.

The English requirement for candidates whose native language is English is satisfied by having no undergraduate grades below B in English composition or by scoring 600 or higher on the Verbal Aptitude Section of the Graduate Record Examination. Students who do not satisfy the English requirement by either of the above methods may take a written examination administered by the Department of English to demonstrate their proficiency. Students whose native language is not English must pass the TOEFL examination with a grade of 550 or higher and take a diagnostic test when they seek admission to the physics graduate program.

Fifth Year

Ninth Semester

- PHYS 55000 Introduction to Quantum Mechanics 3
- ME 500-level ME primary area course 3
- ME 500-level ME primary area course 3
- **Total** 9

Tenth Semester

- ME 69800 (thesis option) or ME 500-level ME primary/related area course 3
- ME 69800 (thesis option) or ME 500-level ME primary/related area course 3
- Science elective: Graduate PHYS or MATH course 3
- CAND 99100 Candidate for Graduation (with B.S. in Physics) 0
- CAND 99100 Candidate for Graduation (with an M.S. in ME) 0
- **Total** 9

Science Electives (5th and 6th semesters) may be replaced by engineering courses with departmental approval.

Consult the Department of Mechanical Engineering Master’s Program Handbook (2010-2012) for ME primary and related courses.
arrive at IUPUI. The score on this test will determine what English courses are required.

The Physics Qualifying Examination is administered throughout the Purdue graduate system and must be taken, at the latest, after completing the introductory graduate courses. Two attempts are permitted to obtain a passing grade.

The student's plan of study is worked out in cooperation with the student's graduate advisor and committee. It must be submitted and accepted by the graduate school no later than the semester before the one in which the student plans to graduate. The English requirement must be satisfied before the plan of study may be filed.

The master's degree requires the satisfactory completion of 30 credit hours of course work at the 500 and 600 level. Twenty-four (24) credit hours must be in physics and biophysics, including one laboratory course. In the thesis option, 6 of the physics credit hours will be earned by enrolling in PHYS 69800 Research M.S. Thesis. This option requires a written thesis. In the nonthesis option, 6 of the physics credit hours will typically be earned through enrollment in PHYS 59000 Reading and Research. This option requires a written report. Six (6) credit hours must be in mathematics, which may be replaced in part by PHYS 60000 Methods of Theoretical Physics. The grade requirements are A or B in 500-level courses; A, B, or C in 600-level courses; A, B, or C in mathematics courses; and a minimum grade point average of 2.8.

Doctor of Philosophy

Qualified students may be authorized to pursue the Ph.D. degree at IUPUI in areas where a program has been arranged with Purdue, West Lafayette. Students are usually expected to complete an M.S. degree before pursuing the Ph.D. degree. Interested students should contact the Department of Physics for further details.

Research Interests and Facilities

The department's major research strengths and facilities are in the area of biological physics and magnetic resonance, in experimental and theoretical laser physics and quantum optics, and in experimental materials physics. The physics faculty directs use of four magnetic resonance spectrometers in two locations. In addition, the school has a high-performance absorption spectrometer equipped to examine cryogenic samples, as well as other instrumentation for biophysical research. Current experimental research includes EPR and NMR investigations of cells, enzymes, proteins, and model membranes. Theoretical work involves calculations and computer simulations of magnetic resonance lineshapes, studies of the biophysics of photosynthesis, and theoretical condensed matter physics. The optics labs are equipped with argon ion, titanium sapphire, diode, and helium-neon lasers, in addition to state-of-the-art equipment, including digital oscilloscopes and spectrum analyzers, which allow students and faculty to probe fundamental issues in laser noise and the quantum nature of light. The materials lab includes an advanced magnetron sputter deposition system, and systems for the measurement of magnetic and electronic properties of thin film materials. All students have access to the IUPUI computing facilities, which include dedicated Unix machines, as well as the minicomputers in the department. Several ongoing projects involve collaborations with the IU School of Medicine, Methodist Hospital of Indiana, and other departments in the School of Science.

Department of Psychology

IUPUI
Science Building, LD 124
402 N. Blackford Street
Indianapolis, IN 46202-3275
Phone: (317) 274-6947; fax: (317) 274-6756

www.psych.iupui.edu

- **Professors** Appleby, Borden (Associate Vice President, University Planning, Institutional Research and Accountability), Bringle (Chancellor's Professor), Evenbeck (Associate Vice Chancellor and Dean of University College), Fettermann, Goodlett, Hazer, Johnson (Chair), McGrew, Murphy (Associate Dean, School of Science)
- **Chancellor's Professor Emeritus** Bond
- **Professors Emeriti** Davis, Hanford, Kremer, Rajeczki, Tzeng
- **Associate Professors** Ashburn-Nardo, Boehm, Devine, Felsten (IUPU Columbus), Grahame, Neale-Beliveau, Salyers, Svanum, Williams
- **Associate Professors Emeriti** Fleener, Fortier, Goldberg, Lauer, Ware
- **Assistant Professors** Bigatti, Cyders, Czachowski, Hirsh, Mosher, Poposki, Rand, Stewart
- **Senior Lecturer** Contino
- **Lecturers** Compton (IUPU Columbus), Guare, Herold, Kroupa
- **Associate Scientist** Stewart
- **Adjunct Professors** Alexy, Austin, Badia-Elder, Bell, Carpenter, Colquitt, Engleman, Futrell, Hansen, Kareken, Lysaker, McKinzie, Morzorati, Rodd, Shain, Swiezy, Tarr, Unverzagl, Witken, F. Zhou, Zimet
- **International Associate** Roman

Psychology is the study of behavior and mental processes. Psychologists apply the scientific method to a range of questions that are as varied as how eyes perceive light and form, how children develop a sense of morality, and under what conditions people help in emergencies. As an applied profession, psychologists use research results to solve personal and social problems.

Because the subject matter of psychology is broad, psychologists have become specialized. Specialization allows each psychologist to apply the general principles of science and behavior to a given area of interest. These include motivation and learning, child and adult development, social behavior of humans and animals, personality, thought processes, consumer behavior, and many more. Psychologists who function as applied professionals specialize in areas that include clinical, counseling, health care, rehabilitation, and industrial psychology.

- **Undergraduate Programs**
- **Undergraduate Honors Programs**
- **Graduate Programs**
• Plan of Study

Undergraduate Degree Programs
Bachelor of Arts

Degree Requirements
The School of Science requirements for a Bachelor of Arts degree are listed in this bulletin (see the School of Science requirements under “Undergraduate Programs”).

Area Requirements
Area I English Composition and Communication Skills
See the School of Science requirements under “Undergraduate Programs” in this bulletin. The second semester of English composition may be satisfied with ENG-W132, ENG-W150, or ENG-W231. ENG-W231 is recommended for psychology majors.

Area II Foreign Language
A first-year proficiency in a modern foreign language is required. See the School of Science requirements under “Undergraduate Programs” for details.

Area IIIA Humanities, Social Sciences, and Comparative World Cultures
See the School of Science requirements under “Undergraduate Programs” in this bulletin. Note: The course used to satisfy the List S (Social Sciences) requirement cannot be a psychology course.

Area IIIB Junior/Senior Integrator
The Junior/Senior Integrator requirement is suspended indefinitely as a school-level requirement. No junior/senior integrator course is required for psychology majors.

Area IIIC Physical and Biological Sciences
See the School of Science requirements under “Undergraduate Programs” in this bulletin.

NOTE: The following are considered overlapping courses. Credit is not allowed for both of two overlapping courses / course sequences.

• BIOL-N212 / BIOL-N213 and BIOL-N217
• BIOL-N214 / BIOL-N215 and BIOL-N261
• CHEM-C101 and CHEM-C105

NOTE: Courses that do not count in Area IIIC include AST-A130, BIOL-N100, BIOL-N200, CHEM-C100, FIS 20500, GEOL-G130, PHYS 10000, PHYS 14000, PHYS 20000 and all agriculture courses. This is not a complete list. Please check with your academic advisor if you have questions about a particular course.

Area IIID Mathematical Sciences
See the School of Science requirements under “Undergraduate Programs” in this bulletin.

MATH-M118 Finite Mathematics and CSCI-N207 Data Analysis Using Spreadsheets are recommended to fulfill the IIID Mathematical Sciences requirement.

Note: Computer Science CSCI-N100 level courses and CPT/CIT 10600 do not count for any credit toward any degree in the School of Science. Also, CSCI-N241 and CSCI-N299 do not count in Area IIID, but may count as a general elective.

Area IV Major Requirements
See the following section, “Major in Psychology (B.A. or B.S.).”

Bachelor of Science

Degree Requirements (all except Behavioral Neuroscience Track)
The School of Science requirements for a Bachelor of Science degree are listed in this bulletin under “Undergraduate Programs.”

Area I English Composition and Communication Skills
See the School of Science requirements under “Undergraduate Programs” in this bulletin. The second semester of English composition may be satisfied with ENG-W132, ENG-W150, or ENG-W231. ENG-W231 is recommended for psychology majors.

Area II Foreign Language
No foreign language proficiency is required for a Bachelor of Science degree.

Area IIIA Humanities, Social Sciences, and Comparative World Cultures
See the School of Science requirements under “Undergraduate Programs” in this bulletin. Note: The course used to satisfy the List S (Social Sciences) requirement cannot be a psychology course.

Area IIIB Junior/Senior Integrator
The Junior/Senior Integrator requirement is suspended indefinitely as a school-level requirement. No junior/senior integrator course is required for psychology majors.

Area IIIC Physical and Biological Sciences
See the School of Science requirements under “Undergraduate Programs” in this bulletin.

Two of the required four courses must be biology and/or chemistry courses. Recommended course sequences are CHEM-C101 / CHEM-C110, or CHEM-C105 / CHEM-C106, or BIOL-N212 / BIOL-N213 and BIOL-N214 / BIOL-N215.

NOTE: The following are considered overlapping courses. Credit is not allowed for both of two overlapping courses / course sequences.

• BIOL-N212 / BIOL-N213 and BIOL-N217
• BIOL-N214 / BIOL-N215 and BIOL-N261
• CHEM-C101 and CHEM-C105

NOTE: Courses that do not count in Area IIIC include AST-A130, BIOL-N100, BIOL-N200, CHEM-C100, FIS 20500, GEOL-G130, PHYS 10000, PHYS 14000, PHYS 20000 and all agriculture courses. This is not a complete list. Please check with your academic advisor if you have questions about a particular course.

Area IIID Mathematical Sciences
See the School of Science requirements under “Undergraduate Programs” in this bulletin.

MATH-M118 Finite Mathematics, MATH-M119 Brief Survey of Calculus, and CSCI-N207 Data Analysis Using Spreadsheets are recommended to fulfill the IIID Mathematical Sciences requirement.

Note: Computer Science CSCI-N100 level courses and CPT/CIT 10600 do not count for any credit toward any
degree in the School of Science. Also, CSCI-N241 and CSCI-N299 do not count in Area IIID, but may count as a general elective.

Area IV
See the following section, “Major in Psychology (B.A. or B.S.).”

Bachelor of Science (Behavioral Neuroscience Track)

Degree Requirements
The School of Science requirements for a Bachelor of Science degree are listed in this bulletin under “Undergraduate Programs.”

Area I English Composition and Communication Skills
See the School of Science requirements under “Undergraduate Programs” in this bulletin. The second semester of English composition may be satisfied with ENG-W132, ENG-W150, or ENG-W231. ENG-W231 is recommended for psychology majors.

Area II Foreign Language
No foreign language proficiency is required for a Bachelor of Science degree.

Area IIIA Humanities, Social Sciences, and Comparative World Cultures
See the School of Science requirements under “Undergraduate Programs” in this bulletin. Note: The course used to satisfy the List S (Social Sciences) requirement cannot be a psychology course.

Area IIIB Junior/Senior Integrator
The Junior/Senior Integrator requirement is suspended indefinitely as a school-level requirement. No junior/senior integrator course is required for psychology majors.

Area IIIC Physical and Biological Sciences
Complete the following courses:
- BIOL-K101, BIOL-K103, and BIOL-K322
- CHEM-C105, CHEM-C125, CHEM-C106, and CHEM-C126.

Area IIID Mathematical Sciences
- MATH-M118 and MATH-M119, MATH 23100 and MATH 23200, or MATH 16500 and MATH 16600.
- CSCI-N207 Data Analysis Using Spreadsheets is recommended.

Note: Computer Science CSCI-N100 level courses and CPT/CIT 10600 do not count for any credit toward any degree in the School of Science. Also, CSCI-N241 and CSCI-N299 do not count in Area IIID, but may count as a general elective.

Area IV Major Requirements
See the following section, “Major in Psychology (B.A. or B.S.).”

Major in Psychology (B.A. or B.S.)
The Department of Psychology at IUPUI has a program for majors that requires 40 credit hours of selected course work. Students pursuing a B.S. degree must select a Capstone Lab or Capstone Honors Research (PSY-B499) as their capstone course (see below). Students are encouraged to consult with an academic advisor for determination of whether to pursue a B.A. or a B.S. degree.

Introductory Psychology
(Three courses; 7 credit hours)
- PSY-B103
- PSY-B104
- PSY-B105

Research Methods
(Two courses; 6 credit hours)
- PSY-B305
- PSY-B311

Core Areas
(Six courses; 18 credit hours)
Select six courses from the following:
- PSY-B307
- PSY-B310
- PSY-B320
- PSY-B334
- PSY-B340
- PSY-B344
- PSY-B356
- PSY-B358
- PSY-B370
- PSY-B380
- PSY-B398
- PSY-B424

Psychology Specialization
(Two courses; 6 credit hours)
Any two different numbered upper-level (300 or above) psychology courses.

Capstone (One course; 3 credit hours)
Select one course from the following options:
- Advanced Lab or Honors Research (B.S. degree requires one of these research courses)
 - PSY-B433
 - PSY-B471
 - PSY-B499
- Practicum (does not fill requirement for B.S. degree)
 - PSY-B462
 - PSY-B482
- Capstone Seminar (does not fill requirement for B.S. degree)
 - PSY-B454

Psychology Major Concentrations
The IUPUI Department of Psychology provides students with the opportunity to develop a concentration in an area of specialization in psychology by successfully completing (a) two core courses, (b) two specialization courses, and (c) one capstone course aligned with one of the four areas of psychology listed below. Concentrations are recommended for students who are considering graduate school or employment in one of these areas. Students who successfully complete the requirements for one of
these concentrations will receive an official notation of their concentration on their transcript after their degree is completed. Students should consult an academic advisor for more information about pursuing a concentration and must officially apply for a concentration by completing and submitting the application form available in the Psychology Department office (LD 124).

- **CONCENTRATION - Behavioral Neuroscience (B.S. only)**
 1. The following 23 credit hours of chemistry and biology are also required:
 2. BIOL-K101 (5)
 3. BIOL-K103 (5)
 4. CHEM-C105 (3)
 5. CHEM-C125 (2)
 6. CHEM-C106 (3)
 7. CHEM-C126 (2)

- **CORE AREA COURSES**
 - **Required**
 - PSY-B320 Behavioral Neuroscience
 - PSY-B398 Brain Mechanisms of Behavior
 - **Recommended**
 - PSY-B344 Learning
 - PSY-B356 Motivation

- **SPECIALIZATION COURSES**
 - PSY-B394 Drugs and Behavior
 - and
 - PSY-B492 Independent Research or PSY-I545 Psychopharmacology

- **CAPSTONE**
 - PSY-B499 Capstone/Honors Research

- **CONCENTRATION - Clinical Psychology (B.A. or B.S.)**
- **CORE AREA COURSES**
 - **Required**
 - PSY-B307 Tests and Measurements
 - PSY-B380 Abnormal Psychology
 - **Recommended**
 - PSY-B356 Motivation

- **SPECIALIZATION COURSES**
 - **Choose two of the following three courses:**
 - PSY-B322 Introduction to Clinical Psychology
 - PSY-B365 Stress and Health
 - PSY-B386 Introduction to Counseling

- **CAPSTONE**
 - PSY-B481 Capstone Laboratory in Clinical Psychology (B.A. or B.S.)
 - PSY-B482 Capstone Practicum in Clinical Psychology (B.A. only)
 - (PSY-B386 is a prerequisite for PSY-B482)
 - PSY-B499 Capstone/Honors Research (B.A. or B.S.)

- **CONCENTRATION - Psychology of Addictions (B.A. or B.S.)**
- **CORE AREA COURSES**
 - **Required**
 - PSY-B320 Behavioral Neuroscience
 - PSY-B380 Abnormal Psychology
 - **Recommended**
 - PSY-B356 Motivation

- **SPECIALIZATION COURSES**
 - **Choose two of the following three courses:**
 - PSY-B386 Introduction to Counseling
 - PSY-B394 Drugs and Behavior
 - PSY-B396 Alcohol, Alcoholism, and Drug Abuse

- **CAPSTONE**
 - PSY-B481 Capstone Laboratory in Clinical Psychology (B.A. or B.S.)
 - PSY-B482 Capstone Practicum in Clinical Psychology (B.A. only)
 - (PSY-B386 is a prerequisite for PSY-B482)
 - PSY-B499 Capstone/Honors Research (B.A. or B.S.)

Minor in Psychology

The Department of Psychology offers an undergraduate minor program in psychology that requires 18 credit hours of selected course work. Interested students should obtain information from and submit an application to the psychology secretary. Course requirements are as follows:

Introductory Psychology
(2 courses; 6 credit hours)

- PSY-B104
- PSY-B105

Core Areas Three courses; 9 credit hours
Select three courses from the following:
- PSY-B307
honors thesis project that is mentored by a faculty advisor. Departmental Honors culminates in an independent
PSY-B499 Capstone Honors Research in Psychology
the Psychology Department’s Honors Program advisor.
Kathy Johnson (LD 124, 274-4930) kjohnso@iupui.edu
information, go to www.honorscollege.iupui.edu or Dr.
3.5 in honors and psychology classes. For additional
credit. To graduate with honors, the student must have
honors thesis. Only grades of A or B will count for honors
B499 Honors Research, which should culminate in an
the remaining 12 can be either in or outside psychology). From 3-6 hours of this credit must be PSY-
students with theory and practice that will enable them
to apply psychological techniques and findings in a
subsequent job setting. Depending on the program, the
M.S. degree may be completed on a full- or part-time
basis and normally takes two or three years to finish.
Depending on the case, a minimum of 36 credit hours
is required, including departmental core, area core, and
elective courses.
Industrial/Organizational Psychology
This emphasis is designed to prepare individuals for
positions in industry or for entry into an industrial/
organizational doctoral Program. Students are familiarized with the scientist-practitioner model, which emphasizes both research and the application of problem-solving skills to organizational problems. Students in the Program are taught analytic methods for diagnosing work-related problems, developing solutions, and evaluating the effectiveness of those solutions. While the primary focus of the curriculum is on the traditional personnel psychology areas of selection, training, compensation, and performance evaluation, students also learn about topics such as decision-making, motivation, leadership, and organizational effectiveness.

Psychology Elective
(One course; 3 credit hours)
Any additional upper-level (300 or above) psychology course.
No grade lower than C- is acceptable for any course in the
minor.
A minimum grade point average of 2.0 in minor courses is
required.
A minimum of 6 credit hours of the minor must be taken at
IUPUI.
Undergraduate Honors
IUPUI’s Honors Program provides highly motivated
and creative students the opportunity to enroll in small,
dynamic classes and to collaborate with faculty in
independent study and research projects. Psychology
majors admitted to the IUPUI Honors Program will be
eligible to participate in all psychology honors courses
and to graduate with honors in psychology. Usually
honors credit is based on individual student-faculty
agreement to enhance normal course requirements called
H-Options, which can be added to existing courses in
psychology. Honors students can also enroll in graduate-
level psychology courses if they receive the consent of
the instructors in those courses. Students who are not in the
IUPUI Honors Program, but who meet the minimum
GPA criterion will be able to participate in honors courses,
but will not receive honors credit. For currently enrolled
students who have completed at least 12 credit hours,
the GPA criterion for admission to the honors program is
3.3. For new students, the criteria for admission are re-
centered SAT scores of 1200 or graduation in the top 10
percent of their high school class.
To graduate with Honors in Psychology, the student
must earn at least 24 hours of honors credit, 6 of which
must be in psychology and 6 of which must be outside of
psychology (the remaining 12 can be either in or outside
psychology). From 3-6 hours of this credit must be PSY-
B499 Honors Research, which should culminate in an
honors thesis. Only grades of A or B will count for honors
credit. To graduate with honors, the student must have
an overall GPA of at least 3.3 and a GPA of at least
3.5 in honors and psychology classes. For additional
information, go to www.honorscollege.iupui.edu or Dr.
Kathy Johnson (LD 124, 274-4930) kjohnso@iupui.edu
the Psychology Department’s Honors Program advisor.
PSY-B499 Capstone Honors Research in Psychology
Departmental Honors culminates in an independent
honors thesis project that is mentored by a faculty advisor.

This is a yearlong research experience that includes two components:

- Students will conduct their own research project
under the guidance of a faculty member in psychology.
- Students will attend capstone honors research
seminar meetings every other Friday (beginning in
the fall and ending in the spring semester). Seminar
meetings will focus on a diverse array of topics
related to research in psychology.

Capstone Honors Research (PSY-B499) fulfills the
capstone requirement within the psychology major.
Students do not have to be in the Honors program to
take PSY-B499. Additional information about Capstone
Honors Research is available in the Psychology Advising
Office (LD 123) or by contacting Dr. Kathy Johnson (LD
126B, 274-4930) kjohnso@iupui.edu or Dr. Jane Williams
at LD 126N, 274-2966, jrwillim@iupui.edu.

Psi Chi: The International Honor Society in Psychology
To become a member of Psi Chi, an undergraduate
psychology major must have earned at least 9 credit hours
of psychology classes and possess an overall GPA of
3.0 and a GPA of 3.5 in psychology classes. Interested
students should submit an application to the Psi Chi
faculty advisor. There is a one-time, lifetime membership
fee.

Graduate Programs
The department offers Purdue University Master of
Science (M.S.) and Doctor of Philosophy (Ph.D.) degree
programs. At the M.S. level, programs are offered in
industrial/organizational psychology and clinical
psychology. At the Ph.D. level, programs are offered in
clinical psychology and psychobiology of addictions.
M.S. Programs
Graduate training at the M.S. level is designed to provide
students with theory and practice that will enable them
to apply psychological techniques and findings in a
subsequent job setting. Depending on the program, the
M.S. degree may be completed on a full- or part-time
basis and normally takes two or three years to finish.
Depending on the case, a minimum of 36 credit hours
is required, including departmental core, area core, and
elective courses.

Industrial/Organizational Psychology
This emphasis is designed to prepare individuals for
positions in industry or for entry into an industrial/
organizational doctoral Program. Students are familiarized with the scientist-practitioner model, which emphasizes both research and the application of problem-solving skills to organizational problems. Students in the Program are taught analytic methods for diagnosing work-related problems, developing solutions, and evaluating the effectiveness of those solutions. While the primary focus of the curriculum is on the traditional personnel psychology areas of selection, training, compensation, and performance evaluation, students also learn about topics such as decision-making, motivation, leadership, and organizational effectiveness.
Clinical Psychology
This Program is designed to prepare students in the science of clinical psychology. The Program is intended for individuals who plan to enter or continue careers in counseling psychology and related fields upon completion of the M.S. degree. The Program's focus upon core skills and methods would be particularly suitable for those students who plan to pursue the Ph.D. degree following completion of the M.S., or for students who have an interest in jobs in health care settings that involve research design and collection and analysis of data. A core set of courses introduces the methods and basic skills of clinical psychology, including courses in counseling and psychological assessment. The curriculum is flexible and designed to be individually tailored by selection of elective courses and practicum experiences. Graduation requires the completion of a minimum of 36 hours of graduate course work, including the required core, electives, and at least two practicum placements. The Program does not require a thesis, although students who have research interests are encouraged to pursue a faculty mentor relationship and a thesis option.

Ph.D. Programs
Clinical Psychology
Using a scientist-practitioner model, the Program is designed to integrate the assessment and intervention strategies of empirically-based clinical psychology with rehabilitation: community psychology’s emphasis on optimizing the adaptation of persons with psychiatric conditions and health psychology’s emphasis on understanding factors impacting the prevention, development, treatment and maintenance of health and mental health conditions. As researchers, we study behaviors, experiences, and attitudes of persons with disabilities and illness; develop and assess theoretical models that attempt to understand how behavior, health, and illness interact, and develop and evaluate treatment approaches and their effectiveness. As practitioners, we assess individuals and their environments, plan and implement interventions, and monitor the success of their work. The Program emphasizes the acquisition of the methods, theories, and knowledge of behavioral science along with the practitioner skills of clinical psychology. As a Program, we offer specialization training in two areas within clinical psychology: psychiatric services and health psychology. Within both areas there is a strong emphasis on research. The range of populations subsumed is broad and includes such populations as persons with traumatic injuries, sever and persistent mental illness, chronic heart disease, cancer, ad addictions.

The Program subscribes to a scientist-practitioner model of clinical training, with an emphasis on clinical science. As such, individuals seeking strong research training, in conjunction with empirically-based practicum experiences, would be the most desirable students for the Program.

Graduates of the Program will be qualified to assume positions as academicians, evaluators, researchers, trainers, planners, consultants, and direct-service providers. The Program emphasizes rigorous academic training, which is combined with practical application in a wide variety of clinical centers in Indianapolis and elsewhere. Full-time study and a minimum of 90 credit hours (post-baccalaureate) are required, and it is expected that it will take five years to complete the Program. The Program includes a diverse training in psychology, including a psychology core, statistics and measurement, clinical psychology, internships and practica, and an empirical thesis and doctoral dissertation. Clinical specialty courses in Health Psychology and Psychiatric Rehabilitation are offered. A course in ethics is also required.

Psychobiology of Addictions
This Program is designed to promote a comprehensive understanding of the neurobiological bases of behavior, with an emphasis on the behavioral and neurobiological aspects of drugs of abuse and addictive behaviors. General goals of the Program are to develop knowledge and expertise in the neurobiological mechanisms of behavior, develop skills in applying methods of behavioral neuroscience research to the problems of alcohol and drug abuse and addiction, and train competence in communication and teaching of knowledge and research skills. Students will obtain broad training in the combined disciplines of the neurosciences (e.g., behavioral and developmental neuroscience, psychopharmacology, neurobiology) and the behavioral sciences (e.g., experimental psychology, cognitive psychology, learning, experimental design and analysis, and animal models of drug abuse and addiction). The psychobiology of addictions program is an IUPUI program that is administered through the Department of Psychological Sciences at Purdue, West Lafayette. Students take courses at IUPUI, but must meet all Purdue requirements and have a Purdue faculty member on their Ph.D. preliminary and final examination committees. A minimum of 85 credit hours (post-baccalaureate) are required, plus approval of the plan of study by the student’s advisory committee. The Program intends to train students seeking careers in teaching and/or research in academic environments, medical institutions, pharmaceutical firms, and governmental agencies.

Financial Support
Financial support for eligible graduate students at both the M.S. and Ph.D. levels is available through teaching and research assistantships, tuition stipends, and fellowships. Full assistantships require a minimum of 20 hours of work per week and include at least partial tuition remission in addition to salary.

Admission Requirements
Industrial/Organizational Psychology
Undergraduate training in psychology, mathematics, and the sciences is highly desirable, though not required. Applicants should have had at least one undergraduate course in statistics, and one in tests and measurements is also advantageous. To be considered for admission without probation, applicants must obtain (a) a baccalaureate degree from a college or university of recognized standing, (b) a GPA of 3.0 or higher on a 4.0 scale, (c) a minimum subtotal on the GRE verbal and quantitative of 1100 with a quantitative score of a least 550, and (d) three favorable letters of recommendation. The student who does not meet the above standards, but shows potential for graduate studies, could be recommended for conditional admission.
Clinical Psychology
Undergraduate training in psychology, mathematics, and the physical sciences is highly desirable, though not required.

Except in unusual circumstances, students admitted to the Program are expected to complete at least 15 credit hours in psychology. Although there are no specific undergraduate course prerequisites for Program entry, students without coursework in the following areas will likely be at a disadvantage when taking some of the required courses: (1) tests and measurement, (2) statistics, (3) human physiology or physiological psychology, and (4) abnormal psychology. Students without preparation in these areas may be asked by their instructors to complete some remedial activity prior to enrolling in the graduate course (e.g., reading an undergraduate text or taking an undergraduate course).

Students may apply directly to the Ph.D. Program or to the terminal M.S. Program (or both simultaneously). For an applicant to be considered for admission to the M.S. Program, the applicant must obtain (a) a baccalaureate degree from a college or university of recognized standing, (b) a GPA of 3.0 or higher on a 4.0 scale, (c) a minimum subtotal on the GRE verbal and quantitative of 1100 with a quantitative score of a least 550, and (d) three favorable letters of recommendation.

The Ph.D. Program seeks talented and motivated persons who have an interest in clinical health psychology and psychiatric rehabilitation and who have the potential to make creative contributions as clinical psychologists. Admission to the Ph.D. Program is competitive and only under unusual circumstances will students be considered for admission if they fail to meet the following minimum standards: (a) an undergraduate and graduate grade point average of 3.2 or higher on a 4.0 scale, (b) a minimum composite GRE score (verbal and quantitative) of 1200, (c) three favorable letters of recommendation, and (d) a personal statement expressing an interest in the field of clinical psychology. Prior clinical and research experience is recommended, but not required for admission. Applicants are also required to take the GRE Advanced Test in Psychology.

Psychobiology of Addictions
This Ph.D. Program is designed for individuals interested in academic or research careers studying the psychobiology of addictive behaviors and drugs of abuse. Successful applicants typically have (a) an undergraduate and graduate grade point average of 3.2 or higher on a 4.0 scale, (b) a minimum composite GRE score (verbal and quantitative) of 1200, (c) three favorable letters of recommendation, and (d) a personal statement expressing an interest in the psychobiology of addictions. Students with undergraduate degrees in psychology or the life sciences (e.g., biology, chemistry, neuroscience) are encouraged to apply.

Admission Information
Students are admitted only for fall enrollment, and the deadline for receipt of application materials is specific to each graduate program:

- December 1 - Clinical (Ph.D.)
- January 1 - Psychobiology of Addictions (Ph.D.)
- February 1 - Industrial/Organizational Psychology (M.S.)
- March 15 - Clinical (M.S.)

Students interested in information about admission to graduate programs in psychology should email directly to the graduate program coordinator at gradpsy@iupui.edu, phone (317) 274-6945, or visit the Psychology Department webpage at http://psych.iupui.edu.

Transfer Credit
A maximum of 12 credit hours can be transferred into the M.S. program, and a maximum of 36 credit hours can be transferred into the Ph.D. program. Transfer hours will be accepted only if they are appropriate and judged acceptable by the student’s plan-of-study committee.

Temporary Student Status
A student may enroll in some graduate courses without formal admission into a Psychology graduate program; however, they must be admitted by the IUPUI Graduate Office into the Graduate Non-Degree Program. No more than 12 hours of credit may be applied to an advanced degree program if an individual is later admitted as a regular graduate student. However, if an application to a regular degree program is approved during the session in which a person is enrolled for the 12th credit hour as a non-degree registrant, then all credits taken before and during that term will be eligible for inclusion in a plan of study for a degree program. For inclusion, the courses must be appropriate to the degree program and acceptable to the department and the graduate school. No course in which a grade of less than B (e.g., B-) has been received will be permitted in a plan of study if the course was taken while the student was enrolled as a non-degree registrant. Non-degree registrants may be required to secure consent from each of the departments in which they would like to register for courses.

Research Facilities
The Department of Psychology has extensive laboratory and computer facilities to support faculty and student research. More than 8,000 square feet of laboratory space in the School of Science complex is devoted to psychological research in the areas of clinical psychology, industrial/organizational psychology, life span development, and cognition. Separate animal quarters and modern laboratories are also available to support research in psychobiology. Computer support includes computer clusters and networks within the department, as well as access to a variety of software packages. Internship and practicum sites are available at the Indiana University Medical Center and with numerous other organizations in metropolitan Indianapolis.

Research Interests of Faculty
Major research interests of faculty include social psychology, biofeedback, industrial/organizational psychology, measurement theory and development, program planning and evaluation, clinical psychology, health psychology, psychiatric rehabilitation, behavioral and psychopharmacology, developmental psychobiology, behavioral genetics, cognitive developmental psychology, animal cognition, and student/faculty performance. A current and more detailed listing of faculty research interests is available from the department.
Plans of Study

Although there is no single semester-by-semester plan of study for either the B.A. or the B.S. degree, one possible sequence of courses for each of these degrees is given below. Variations from these examples should be made based on the student's career plans, through consultation with an academic advisor. For career and graduate school information related to psychology, please refer to relevant sections of the psychology department's website www.psych.iupui.edu.

Bachelor of Arts Sample Program (124 cr. required)

Freshman Year

<table>
<thead>
<tr>
<th>First Semester</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PSY-B103</td>
<td>Orientation to a Major in Psychology</td>
<td>1</td>
</tr>
<tr>
<td>PSY-B104</td>
<td>Psychology as a Social Science</td>
<td>3</td>
</tr>
<tr>
<td>ENG-W131</td>
<td>Elementary Composition I</td>
<td>3</td>
</tr>
<tr>
<td>MATH-M118</td>
<td>Finite Mathematics**</td>
<td>3</td>
</tr>
<tr>
<td>HIST-H114</td>
<td>History of Western Civilization II or HIST-H109 Perspectives on the World: 1800 to Present</td>
<td>3</td>
</tr>
<tr>
<td>Foreign language I*</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>16</td>
</tr>
</tbody>
</table>

Second Semester

PSY-B105	Psychology as a Biological Science	3
CSCI-N207	Data Analysis Using Spreadsheets	3
ENG-W231	Professional Writing	3
COMM-R110	Fundamentals of Speech Communication	3
Foreign language II*		3
Total		**15**

Sophomore Year

<table>
<thead>
<tr>
<th>Third Semester</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PSY-B305</td>
<td>Statistics</td>
<td>3</td>
</tr>
<tr>
<td>PSY core course</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Foreign language III*</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Humanities-List H</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Physical or biological science (IIIC)</td>
<td>3-5</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>16-18</td>
</tr>
</tbody>
</table>

Fourth Semester

PSY-B311	Introductory Laboratory in Psychology	3
PSY core course		3
Social Sciences-List S		3
Comparative World Cultures-List C	3	
Total		

Junior Year

<table>
<thead>
<tr>
<th>Fifth Semester</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PSY core courses (2)</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>PSY specialization course</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Physical or biological science (IIIC)</td>
<td>3-5</td>
<td></td>
</tr>
<tr>
<td>Elective</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>15-17</td>
</tr>
</tbody>
</table>

Sixth Semester

PSY core courses (2)		6
PSY specialization course		3
Physical or biological science (IIIC)	3-5	
Elective		3
Total		**15-17**

Senior Year

<table>
<thead>
<tr>
<th>Seventh Semester</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PSY capstone</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Physical or biological science (IIIC)</td>
<td>3-5</td>
<td></td>
</tr>
<tr>
<td>Electives</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>15-17</td>
</tr>
</tbody>
</table>

Eighth Semester

Electives		15-18
CAND 99100 Candidate for Graduation	0	
Total		**15-18**

Fast-Track Plan to Earn a Bachelor of Arts Degree in Psychology in Four Years

IUPUI psychology majors can earn a B.A. degree in four years by completing an average of 13.25 credit hours every Fall and Spring semester and 6 credit hours during the Summer sessions of their first three years. This plan assumes that students develop the ability to successfully complete a slightly heavier course load per semester as they progress from the first half to the second half of their undergraduate education (i.e., from an average of 12.5 credit hours during their freshman and sophomore years to an average of 14 credit hours during their junior and senior years).

Sample Fast-Track B.A. Program (124 cr. required)

Freshman Year

<table>
<thead>
<tr>
<th>First Semester (total 13 credit hours earned)</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PSY-B103 Orientation to a Major in Psychology</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>PSY-B104 Psychology as a Social Science</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ENG-W131 Elementary Composition I</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Foreign language I*</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

CAND 99100 Candidate for Graduation | 0

Total | | **15-18**|
<table>
<thead>
<tr>
<th>Plan Year</th>
<th>Semester</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freshman</td>
<td>First</td>
<td>PSY-B103 Orientation to a Major in Psychology</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>First</td>
<td>PSY-B104 Psychology as a Social Science</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>First</td>
<td>ENG-W131 Elementary Composition I</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>First</td>
<td>MATH-M118 Finite Mathematics**</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>First</td>
<td>MATH-M118 Finite Mathematics**</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>First</td>
<td>PSY-B311 Introductory Laboratory in Psychology</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>First</td>
<td>Physical or biological science (IIIC)</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>First</td>
<td>Humanities-List H</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>First</td>
<td>Social Sciences-List S</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>First</td>
<td>Total</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>Second</td>
<td>PSY-B105 Psychology as a Biological Science</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Second</td>
<td>CSCI-N207 Data Analysis Using Spreadsheets</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Second</td>
<td>Social Sciences-List S</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Second</td>
<td>Foreign language II*</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Second</td>
<td>Total</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>Summer I</td>
<td>PSY-B305 Statistics</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Summer I</td>
<td>Total</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Summer II</td>
<td>ENG-W231 Professional Writing Skills</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Summer II</td>
<td>Total</td>
<td>3</td>
</tr>
<tr>
<td>Sophomore</td>
<td>Third</td>
<td>PSY-B311 Introductory Laboratory in Psychology</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Third</td>
<td>Physical or biological science (IIIC)</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Third</td>
<td>Humanities-List H</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Third</td>
<td>Foreign language III*</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Third</td>
<td>Total</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>Fourth</td>
<td>PSY core course</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Fourth</td>
<td>Physical or biological science (IIIC)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Fourth</td>
<td>Comparative World Cultures-List C</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Fourth</td>
<td>Total</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>Summer I</td>
<td>Total</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Summer II</td>
<td>Total</td>
<td>3</td>
</tr>
<tr>
<td>Junior</td>
<td>Fifth</td>
<td>PSY core course</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Fifth</td>
<td>PSY specialization course</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Fifth</td>
<td>Total</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>Sixth</td>
<td>PSY core course</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Sixth</td>
<td>PSY specialization course</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Sixth</td>
<td>HIST-H114 Western Civilization II or HIST-H109</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Sixth</td>
<td>Perspectives on the World: 1800 to Present</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Sixth</td>
<td>Electives</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Sixth</td>
<td>Total</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>Summer I</td>
<td>Total</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Summer II</td>
<td>Total</td>
<td>3</td>
</tr>
<tr>
<td>Senior</td>
<td>Seventh</td>
<td>Total</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>Eighth</td>
<td>Total</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>Eighth</td>
<td>Electives</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>Eighth</td>
<td>CAND 99100 Candidate for Graduation</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Eighth</td>
<td>Total</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>Bachelor</td>
<td>Bachelor of Science Sample Program (124 cr. required)</td>
<td>124</td>
</tr>
<tr>
<td></td>
<td>Freshman</td>
<td>First Semester</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Freshman</td>
<td>PSY-B103 Orientation to a Major in Psychology</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Freshman</td>
<td>PSY-B104 Psychology as a Social Science</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Freshman</td>
<td>ENG-W131 Elementary Composition I</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Freshman</td>
<td>MATH-M118 Finite Mathematics**</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Freshman</td>
<td>HIST-H114 History of Western Civilization II or HIST-H109</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Freshman</td>
<td>Perspectives on the World: 1800 to Present</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Freshman</td>
<td>Social Sciences-List S</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Freshman</td>
<td>Total</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>Second</td>
<td>Total</td>
<td>3</td>
</tr>
</tbody>
</table>
Sophomore Year

Third Semester
PSY-B305 Statistics 3
PSY core courses (2) 6
Physical or biological science (IIIC): bio or chem 3-5
Comparative World Cultures-List C 3
Total 15-17

Fourth Semester
PSY-B311 Introductory Laboratory in Psychology 3
PSY core courses (2) 6
MATH-M119 Brief Survey of Calculus I 3
Physical or biological science (IIIC): bio or chem 3-5
Total 15-17

Junior Year

Fifth Semester
PSY core courses (2) 6
PSY specialization course 3
Physical or biological science (IIIC) 3-5
Elective 3
Total 15-17

Sixth Semester
PSY specialization course 3
Physical or biological science (IIIC) 3-5
Electives 9
Total 15-17

Senior Year

Seventh Semester
PSY capstone laboratory 3
Electives 12
Total 15

Eighth Semester
Electives 16
CAND 99100 Candidate for Graduation 0
Total 16

* For students needing courses to establish first-year proficiency in a modern foreign language. Otherwise, other courses may be taken to fulfill area requirements or electives.

** Students who do not test successfully into MATH-M118 must complete one or more lower-level math classes to develop the skills necessary to perform well in MATH-M118. Credits earned for these remedial math classes do not count as part of the required 124 credit hours to graduate.

Departments & Centers

- Biology
- Biotechnology
- Chemistry and Chemical Biology
- Computer and Information Science
- Earth Sciences
- Environmental Science
- Forensic and Investigative Sciences
- Interdisciplinary Studies
- Mathematical Sciences
- Physics
- Psychology
- Special Programs

Teaching Certification

Becoming a Licensed Teacher

Top quality science and mathematics teachers are in high demand, and the IU School of Education at IUPUI is recognized as a leader in urban education. Students who want to become teachers of middle school and/or high school science or mathematics must take specific programs of study aligned to the standards for teaching these subject areas. Teachers must fully understand the content they teach, the realities of schools, and methods for successfully teaching every child. This requires earning a major or a degree in the School of Science and completing a teacher preparation program in the School of Education.

Mathematics and science majors who want to become teachers need to seek advising from the School of Science as soon as possible so that they take the right courses as they complete their majors. Mathematics majors often find they can complete both their major in mathematics and the Learning to Teach/Teaching to Learn (LTTL) program as part of their bachelor’s degree. Science majors typically complete their bachelor’s degree in science and then enter the Transition to Teaching (T2T) program as post baccalaureate students, earning the first half of their master’s degree in this 12-month teacher education program. The Transition to Teaching program is also an option for mathematics graduates or returning students.

Admission to either the undergraduate (LTTL) or the graduate (T2T) teacher education program is competitive.
Students must complete a formal application and have most of the required courses in the major, passing PRAXIS test scores, a clear criminal history check, and at least a 2.5 overall GPA. Specific information about admission to each program is available on the School of Education Web site: education.iupui.edu

Both the Learning to Teach/Teaching to Learn program and the Transition to Teaching program enable students to earn Rules 2002 Indiana Teacher Licenses. The LTTL program consists of 43 credit hours of undergraduate study, sequenced across four semesters including a final semester of student teaching. The T2T program is 18 credit hours (plus program fees) of graduate study done while practice teaching in schools everyday for one school year.

Note: Information about teacher education and licensing may change for many reasons, including legislative mandates and state policies. Students need to check for current information on the School of Education Web site education.iupui.edu and meet with School of Education advisors regularly.

Preprofessional Programs

While some professional programs (dental, pharmacy, veterinary) may require an undergraduate degree for strong applicants, many do require an undergraduate degree. The preprofessional student is urged to elect a degree program rather than fulfilling the minimum requirements for entry into professional programs. This provides the necessary background if a degree is required, and serves as a backup plan if the student does not matriculate to a professional program.

Students may choose from a variety of majors while completing preprofessional requirements. Students are encouraged to consult with their major advisor, as well as the School of Science health professions advisor, if enrolled in a School of Science degree program.

Although there are many professional programs from which to choose and we encourage students to apply to multiple programs, our preprofessional advising is aligned with the programs with which we are most closely affiliated –IU in Bloomington, the IUPUI campus in Indianapolis and Purdue University in West Lafayette.

Post-baccalaureate students holding non-science degrees may choose to take prerequisite courses through the School of Science for entry into professional programs. These students should consult with the health professions advisor for help with the admission process and course selection. For additional information, see the School of Science Bulletin, Graduate Programs, Graduate Nondegree Study section.

Most professional programs require not only specific prerequisite courses, a strong GPA, and a profession-specific or general entrance test, but also experience including shadowing in the field, volunteering and leadership activities.

Premedical Program

Students planning to apply to medical school must choose a degree program in addition to taking courses that fulfill the admission requirements for their chosen medical school. While many opt to complete their degrees with science majors, other fields of specialization are acceptable. Freshmen should declare their chosen major and seek advising for their degree requirements from the advisor in their major department. IUPUI also offers health professions advising in the School of Science and the School of Liberal Arts. Premedical students should consult the health professions advisor in their school once they have completed the 10 credit hours of biology and 10 credit hours of inorganic chemistry required for medical school in order to plan the additional courses needed for medical school, timing for the MCAT test and the admission process to medical school.

Prerequisites for IU School of Medicine

The premedical student should complete the bachelor's degree. The Medical College Admission Test (MCAT) is required.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL-K101</td>
<td>Concepts of Biology I</td>
<td>5 cr.</td>
</tr>
<tr>
<td>BIOL-K103</td>
<td>Concepts of Biology II</td>
<td>5 cr.</td>
</tr>
<tr>
<td>CHEM-C105 / CHEM-C125</td>
<td>Principles of Chemistry I/ Lab</td>
<td>3 cr./2 cr.</td>
</tr>
<tr>
<td>CHEM-C106 / CHEM-C126</td>
<td>Principles of Chemistry II/ Lab</td>
<td>3 cr./2 cr.</td>
</tr>
<tr>
<td>CHEM-C341 / CHEM-C343</td>
<td>Organic Chemistry I/ Lab</td>
<td>3 cr./2 cr.</td>
</tr>
<tr>
<td>CHEM-C342</td>
<td>Organic Chemistry II</td>
<td>3 cr.</td>
</tr>
<tr>
<td>PHYS-P201</td>
<td>General Physics I</td>
<td>5 cr.</td>
</tr>
<tr>
<td>PHYS-P202</td>
<td>General Physics II</td>
<td>5 cr.</td>
</tr>
</tbody>
</table>

Predental, Preveterinary, Preoptometry Programs

Admission to professional schools is highly competitive. The preprofessional student is therefore urged to elect a degree program rather than fulfilling the minimum requirements of these schools. Students who choose predental, preveterinary medicine, and preoptometry are usually placed in the Department of Biology where preprofessional advising is available. Predental students are also encouraged to meet with the health professions advisor in the School of Science to plan for the testing and admission process required by dental schools. Refer to the Department of Biology section of this bulletin for the required courses for Indiana University School of Optometry and Purdue University School of Veterinary Medicine.

Graduate students holding non-science degrees who are electing courses in the School of Science to prepare for medical or dental school are also invited to use the health professions advising service for help with the admission process.
Pre-Dentistry Prerequisites for IU Dental School

Minimum requirements include 90 credit hours of coursework. Bachelor’s degree strongly recommended. The Dental Admission Test (DAT) is required. Applicants should also show evidence of manual dexterity.

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL-K101 Concepts of Biology I</td>
<td>5 cr.</td>
</tr>
<tr>
<td>BIOL-K103 Concepts of Biology II</td>
<td>5 cr.</td>
</tr>
<tr>
<td>BIOL-K483 Biological Chemistry or CHEM-C483</td>
<td>3 cr.</td>
</tr>
<tr>
<td>BIOL-N217 Human Physiology</td>
<td>5 cr.</td>
</tr>
<tr>
<td>BIOL-N261 Human Anatomy</td>
<td>5 cr.</td>
</tr>
<tr>
<td>CHEM-C105 / CHEM-C125 Principles of Chemistry I / Lab</td>
<td>3 cr./2 cr.</td>
</tr>
<tr>
<td>CHEM-C106 / CHEM-C126 Principles of Chemistry II / Lab</td>
<td>3 cr./2 cr.</td>
</tr>
<tr>
<td>CHEM-C341 / CHEM-C343 Organic Chemistry I / Lab</td>
<td>3 cr./2 cr.</td>
</tr>
<tr>
<td>CHEM-C342 / CHEM-C344 Organic Chemistry II / Lab</td>
<td>3 cr./2 cr.</td>
</tr>
<tr>
<td>MATH 23100 Calculus for the Life Sciences I</td>
<td>3 cr. to 4 cr.</td>
</tr>
<tr>
<td>PHYS-P201 General Physics I</td>
<td>5 cr.</td>
</tr>
<tr>
<td>PHYS-P202 General Physics II</td>
<td>5 cr.</td>
</tr>
<tr>
<td>STAT 30100 Elementary Statistical Methods I</td>
<td>3 cr.</td>
</tr>
<tr>
<td>(or STAT-N501 or SPEA-K300)</td>
<td></td>
</tr>
<tr>
<td>ANSC 22300 Animal Nutrition</td>
<td>3 cr.</td>
</tr>
<tr>
<td>(may be taken at Purdue WL or online)</td>
<td></td>
</tr>
<tr>
<td>ENG-W131 English Composition I</td>
<td>3 cr.</td>
</tr>
<tr>
<td>COMM-R110 Fundamentals of Speech Communication</td>
<td>3 cr.</td>
</tr>
<tr>
<td>Arts and Humanities electives</td>
<td>9 cr.</td>
</tr>
</tbody>
</table>

Pre-Veterinary Science Prerequisites for Purdue School of Veterinary Medicine

Bachelor’s degree is not required. The Graduate Record Exam (GRE) is required for admission.

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL-K101 Concepts of Biology I</td>
<td>5 cr.</td>
</tr>
<tr>
<td>BIOL-K103 Concepts of Biology II</td>
<td>5 cr.</td>
</tr>
<tr>
<td>BIOL-K322 / BIOL-K323 Genetics and Molecular Biology/Lab</td>
<td>3 cr./2 cr.</td>
</tr>
<tr>
<td>BIOL-K356 / BIOL-K357 Microbiology/Lab (or MICR-J210 Microbiology and Immunology)</td>
<td>4 cr. to 5 cr.</td>
</tr>
<tr>
<td>BIOL-K483 Biological Chemistry</td>
<td>3 cr.</td>
</tr>
<tr>
<td>CHEM-C105 / CHEM-C125 Principles of Chemistry I / Lab</td>
<td>3 cr./2 cr.</td>
</tr>
<tr>
<td>CHEM-C106 / CHEM-C126 Principles of Chemistry II / Lab</td>
<td>3 cr./2 cr.</td>
</tr>
<tr>
<td>CHEM-C341 / CHEM-C343 Organic Chemistry I / Lab</td>
<td>3 cr./2 cr.</td>
</tr>
<tr>
<td>CHEM-C342 / CHEM-C344 Organic Chemistry II / Lab</td>
<td>3 cr./2 cr.</td>
</tr>
</tbody>
</table>

Pre-Optometry Prerequisites for IU School of Optometry

Minimum of 90 credit hours of coursework. Bachelor’s degree strongly recommended. The Optometry Aptitude Test (OAT) is required.

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL-K101 Concepts of Biology I</td>
<td>5 cr.</td>
</tr>
<tr>
<td>BIOL-K103 Concepts of Biology II</td>
<td>5 cr.</td>
</tr>
<tr>
<td>BIOL-K356 / BIOL-K357 Microbiology/Lab (or BIOL-K324 Cell Biology or BIOL-N217 Human Physiology or BIOL-N261 Human Anatomy</td>
<td>3 cr. to 5 cr.</td>
</tr>
<tr>
<td>CHEM-C105 / CHEM-C125 Principles of Chemistry I / Lab</td>
<td>3 cr./2 cr.</td>
</tr>
<tr>
<td>CHEM-C106 / CHEM-C126 Principles of Chemistry II / Lab</td>
<td>3 cr./2 cr.</td>
</tr>
</tbody>
</table>
CHEM-C341 / CHEM-C343 3 cr./2 cr.
Organic Chemistry I/Lab

ENG-W131 English 3 cr.
Composition I

ENG-W132 English 3 cr.
Composition II
 or **ENG-W231** Professional Writing Skills

MATH 23100 Calculus for the Life Sciences I 3 cr.
to 4 cr.
 or **MATH 22100 or MATH 16500 or MATH-M119**

PHYS-P201 General Physics I 5 cr.

PHYS-P202 General Physics II 5 cr.

PSY-B104 Psychology as a Social Science 3 cr.
 or **PSY-B105 Psychology as a Biological Science**

STAT 30100 Elementary Statistical Methods I 3 cr.
 or **STAT-N501 or PSY-B305 or ECON-E270**

If the student does NOT have a bachelor’s degree, additional courses are required:

- **Arts and Humanities** 6 cr.
- **Foreign language** 6 cr.
 (students having completed 2 or more years in high school with C or better are exempt)
- **Social and Historical Studies** 6 cr.
- Additional credit hours to reach 90 credit hours

Prepharmacy Program

The prepharmacy program at IUPUI consists of approximately 70-90 credit hours of course work required to apply to pharmacy school. Students declaring prepharmacy upon admission to IUPUI are assigned to the Department of Biology, where prepharmacy advising is available. After completion of the required courses for admission, students apply to the pharmacy school of their choice. Refer to the Department of Biology section of this bulletin for required courses to apply to the pharmacy program at the Purdue School of Pharmacy and Pharmacal Sciences.

Pre-Pharmacy Prerequisites for Purdue School of Pharmacy and Pharmacal Sciences

A bachelors’ degree is not required. The Pharmacy College Admission Test (PCAT) is not required for admission to Purdue’s program. Those entering the professional program beginning Fall 2010 will have additional course requirements to fulfill. Interested students should contact Purdue University School of Pharmacy and Pharmacal Sciences for more information.

Pre-Occupational Therapy Program

Students may take any undergraduate program and include a set of core courses needed as prerequisites for a graduate degree in occupational therapy at the Indiana University School of Health and Rehabilitation Sciences. Undergraduate degree programs in biology or psychology in the School of Science may be of interest to the pre-occupational therapy student. Advising for the undergraduate degree and planning the requirements for application/admission to a graduate degree program in occupational therapy is available in those departments. An academic advisor in the IUPUI School of Health and Rehabilitation Sciences is also available for consultation.

BIOL-K101 Concepts of Biology I

BIOL-K103 Concepts of Biology II

BIOL-K356 / BIOL-K357 Microbiology/Lab

BIOL-N217 Human Physiology

BIOL-N261 Human Anatomy

CHEM-C105 / CHEM-C125 Principles of Chemistry I/ Lab

CHEM-C106 / CHEM-C126 Principles of Chemistry II/ Lab

CHEM-C341 / CHEM-C343 Organic Chemistry I/Lab

CHEM-C342 / CHEM-C344 Organic Chemistry II/Lab

ECON-E101 Survey of Economic Issues and Problems

MATH 23100 / MATH 23200 Calculus for the Life Sciences I and II
 or **MATH 22100 / MATH 22200 or MATH 16500 / MATH 16600**

PHYS-P201 General Physics I 5 cr.

ENG-W131 English Composition I 3 cr.

ENG-W132 English Composition II 3 cr.

Additional categories of electives are required for graduation from the pharmacy program at Purdue University. Since they are not required for admission to the program, they may be completed concurrently with prerequisite course work or after admission to the pharmacy program. Students must select a minimum of one course each from Humanities and Behavioral Sciences, Business and Administration, and Science and Technology groups. Please see the health professions advisor for options.
Pre-Occupational Therapy Prerequisites for IU School of Health and Rehabilitation Sciences-IUPUI Campus

Applicants must have completed a bachelor's degree. No entrance exam is required.

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL-N217 Human Physiology</td>
<td>5 cr.</td>
</tr>
<tr>
<td>BIOL-N261 Human Anatomy</td>
<td>5 cr.</td>
</tr>
<tr>
<td>PSY-B310 Life Span Development</td>
<td>3 cr.</td>
</tr>
<tr>
<td>PSY-B380 Abnormal Psychology</td>
<td>3 cr.</td>
</tr>
<tr>
<td>STAT 30100 Elementary Statistical Methods I</td>
<td>3 cr.</td>
</tr>
<tr>
<td>or STAT-N501 or PSY-B305 or ECON-E270</td>
<td></td>
</tr>
<tr>
<td>CLAS-C209 Medical Terminology</td>
<td>2 cr.</td>
</tr>
</tbody>
</table>

Note: Biology and statistics courses must be taken no more than seven years before admission.

The program requires a minimum of 12 hours of observation in three or more sites.

The pre-occupational therapy student should consult with an academic advisor for updates of pre-occupational therapy criteria.

Pre-Physical Therapy Program

Students may take any undergraduate program and include a set of core courses needed as prerequisites for a graduate degree in physical therapy at the Indiana University School of Health and Rehabilitation Sciences. Undergraduate degree programs in biology, chemistry, or psychology in the School of Science may be of interest to the pre-physical therapy student. Advising for the undergraduate degree and planning the requirements for application/admission to a graduate degree program in physical therapy is available in those departments. An academic advisor in the IUPUI School of Health and Rehabilitation Sciences is also available for consultation.

Pre-Physical Therapy Prerequisites for IU School of Health and Rehabilitation Sciences-IUPUI Campus

Applicants must have completed a bachelor's degree. The Graduate Record Exam (GRE) is required for admission.

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL-N217 Human Physiology</td>
<td>5 cr.</td>
</tr>
<tr>
<td>BIOL-N261 Human Anatomy</td>
<td>5 cr.</td>
</tr>
<tr>
<td>CHEM-C105 / CHEM-C125 / Lab</td>
<td>3 cr./2 cr.</td>
</tr>
<tr>
<td>CHEM-C106 / CHEM-C126 / Lab</td>
<td>3 cr./2 cr.</td>
</tr>
<tr>
<td>PHYS-P201 General Physics I</td>
<td>5 cr.</td>
</tr>
<tr>
<td>PHYS-P202 General Physics II</td>
<td>5 cr.</td>
</tr>
</tbody>
</table>

The pre-physical therapy student should consult with an academic advisor for updates of pre-physical therapy requirements.
obtain an honors degree in biology, chemistry, geology, 6 hours of honors credit must be outside the student's
of 24 credit hours, with a 3.5 average in honors work.

to obtain an honors degree in computer science,
274-2660; www.honors.iupui.edu.

Further information about undergraduate research opportunities and transcript notation may be found at
www.urop.iupui.edu.

Honors Program
The IUPUI Honors Program is open to students in both the Purdue and Indiana University degree programs. Students with an overall grade point average (GPA) of 3.0 after their first full semester of work, entering freshmen with a minimum combined math and verbal (critical reading) SAT score of 1200, or ACT of 26, and those who have graduated in the top 10 percent of their high school class, are automatically invited to participate in the Honors Program. Students with a GPA of less than 3.0 may be permitted to take honors courses. They should, however, discuss the matter with their academic advisor and the honors advisor before doing so.

In general, students may take no more than 6 credit hours of honors work each semester. Students may earn honors credit by taking special Honors Program courses (HON H300, HON H399, HON H400), by taking specially designated sections of multisection courses, by doing special overseas or internship work, or by contracting for honors credit using an H-Option contract in conjunction with regular classes.

H-Option contracts are the most popular and frequent way that students earn honors credit. An H-Option requires that a student work out with the instructor of a course a specific contract for a paper, field project, oral presentation, etc., early in the semester. The contract is not merely an extension of the regular class work, but an opportunity not provided by regular assignments. All the necessary signatures of approval, including that of the director of the Honors Program, must be submitted to the Honors Program office before consent to begin the project will be given.

Students completing honors work or an honors degree will, upon request, receive an honors course record listing all honors work, to be included with official university grade transcripts.

For additional information, contact the IUPUI Honors Program, University College, UC 3140, 815 W. Michigan Street, Indianapolis, IN 46202-5164; phone (317) 274-2660; www.honors.iupui.edu.

To obtain an honors degree in computer science, mathematics, or physics, a student must have a cumulative grade point average of 3.3 and a minimum of 24 credit hours, with a 3.5 average in honors work. 6 hours of honors credit must be outside the student’s major field. A senior thesis track is also available. To obtain an honors degree in biology, chemistry, geology, or psychology, a student should follow the requirements described below.

Biology
Students with a GPA of 3.3 and 12 hours of credit, or newly entering freshmen with a minimum combined math and verbal (critical reading) SAT score of 1200 or who are graduating in the top 10 percent of their high school class, qualify for the Biology Honors Program. Students wishing to participate in the Biology Honors Program must first receive approval from the Department of Biology. Students may choose from two tracks. In Track 1 (honors with thesis), students must complete 21 credit hours of honors work including 6 credit hours outside of biology and 15 credit hours in biology. These biology hours are to include 4 credit hours of BIOL K101/BIOL K103 honors sections of lab/recitation, 6 credit hours in honors sections of BIOL K493, and 5 credit hours in H-Option biology courses and/or 500-600-level biology courses. In Track 2 (honors without thesis), students must complete 24 credit hours of honors work. These hours are to include 6 credit hours outside of biology, 4 credit hours of BIOL K101/BIOL K103 honors sections of lab/recitation, and 14 credit hours in H-Option biology courses and/or 500-600-level biology courses.

Chemistry
Students with a minimum GPA of 3.0 may be admitted into the Chemistry Honors Program with approval of the Honors Program and the Department of Chemistry and Chemical Biology. After entering the program, maintenance of a GPA of 3.3 in all courses and of 3.5 in honors courses is necessary. The curriculum committee of the chemistry department will approve any honors Bachelor of Science degrees awarded in chemistry. In addition to meeting general honors requirements, students who intend to graduate with honors in chemistry must complete 24 honors credit hours, consisting of 1 credit hour in the CHEM C301 or CHEM C302 Chemistry Seminar, 6 credit hours in CHEM C409 Chemical Research, 5 credit hours of H-Options in undergraduate courses and/or graduate chemistry courses, and 12 credit hours of honors credit in courses outside of chemistry.

Geology
For the Bachelor of Science degree, honors students must complete 24 credit hours of honors work, 18 credit hours in geology and 6 credit hours in other approved honors courses. For the Bachelor of Arts degree, the requirements are 15 credit hours in geology and 9 credit hours outside of geology in other approved honors courses. The following upper-division geology courses are approved for H-Option contracts: GEOG G205 Reporting Skills in Geoscience, GEOG G209 History of the Earth, GEOG G221 Introductory Mineralogy, GEOG G222 Introductory Petrology, GEOG G304 Principles of Paleontology, GEOG G323 Structural Geology, GEOG G334 Principles of Sedimentation and Stratigraphy, GEOG G403 Optical Mineralogy and Petrography, GEOG G404 Geobiology, plus GEOG G410 Undergraduate Research in Geology (1 cr.), GEOG G406 Introduction to Geochemistry, GEOG G413 Introduction to Geophysics, GEOG G415 Principles of Geomorphology, GEOG G416 Economic Geology, GEOG G430 Principles of Hydrology, and GEOG G499 Honors Research in Geology. The student must complete 3 credit hours in GEOG G499 Honors Research in Geology to satisfy the requirements.
for the honors component. The overall grade point average must be 3.3 with a 3.5 in all honors work.

Psychology
To graduate with honors, the student must earn at least 24 hours of honors credit, 6 credit hours of which must be in psychology and 6 credit hours of which must be outside of psychology (the remaining 12 credit hours can be either). At least 3 hours of this credit must be for PSY B499 Honors Research, which culminates in an honors thesis. Only grades of A or B will count for honors credit. To graduate with honors, the student must have an overall GPA of 3.3 with at least a 3.5 in honors and psychology courses.

Awards & Scholarships
School of Science
- **D. J. Angus Scientech Educational Foundation Scholarship** is awarded to an undergraduate science major from Marion County, or one of the contiguous counties, who has demonstrated financial need, a minimum grade point average of 2.80, and shows future promise.
- **Frank G. and Ernestine M. Lambertus Scholarship** is awarded to a student who has shown outstanding academic progress since the previous year.
- **John D. Barnwell Memorial Scholarship** is awarded to a student in the School of Science who has effectively integrated the sciences and the arts into his or her undergraduate career.
- **Indianapolis Project SEED Scholarship** is awarded to an IUPUI undergraduate student who is pursuing his/her first degree in science, engineering, technology or one of the health sciences and who has successfully participated in the American Chemical Society Indiana Chapter Project SEED summer research program. Preference will be shown to a School of Science major. It is renewable based on academic performance.
- **Robert W. Tuveson Memorial Scholarship** is awarded to a student majoring in the biological sciences. Consideration is given to financial need, academic performance, and future promise.
- **David E. White Alumni Scholarship** is awarded to a School of Science major who plans to graduate within one year of receiving the scholarship and who has demonstrated how his/her personal life experiences have affected his/her educational career.
- **School of Science Dean’s Scholarships and Health and Life Sciences Scholarships** recognize School of Science and health and life science majors attending IUPUI who excel academically and show promise of success in their future careers.
- **Women in Science Scholarships** are awarded to School of Science majors selected to live in the Women in Science residential learning community. Selection is based on academic achievement and educational and career goals.

Department of Biology
- **Award for Outstanding Academic Achievement** is awarded to the student with the best overall academic record in the Department of Biology.
- **Biology Research Awards** are awarded to undergraduate and graduate students making the most outstanding contributions in scientific research.
- **Elizabeth Steele Creveling Memorial Scholarship** is awarded to the outstanding continuing graduate student pursuing a thesis program in the Department of Biology.
- **Richard O. McCracken Memorial Scholarship** is awarded to the outstanding sophomore or junior biology major.
- **Ronald E. Kirk Memorial Award** is awarded to the outstanding freshman biology student.
- **The Tah Tah Self Achievement Award** is awarded to a biology major who plans to pursue a medical career. Preference is shown to African American females.

Department of Chemistry and Chemical Biology
- **American Institute of Chemists Student Research and Recognition Award** is awarded to an outstanding senior student majoring in chemistry.
- **Wilmer K. Fife Memorial Scholarship** is awarded to a chemistry major who is a single parent and demonstrates financial need. The scholarship is renewable and covers tuition and fees.
- **Chemical Rubber Company Outstanding Freshman Award** is awarded to the outstanding student in general chemistry.
- **Frank J. Welcher Award** is awarded to the graduating senior with greatest professional promise.
- **Loren T. Jones Award** is awarded to the graduating senior with the highest academic achievement in a Bachelor of Science degree program.
- **Loren T. Jones Memorial Scholarship** is awarded as summer support to an outstanding chemistry major.
- **Outstanding Undergraduate Analytical Chemistry Award** sponsored by the American Chemical Society.
- **Patricia A. Boaz Award** is awarded to the graduating senior with highest academic achievement in a Bachelor of Arts degree program.
- **Scott Alan Kent Memorial Scholarship** is awarded to a promising sophomore or junior chemistry major.
- **Rich-Keller Elementary Chemistry Scholarship** is awarded each semester to students who excel in CHEM-C101 and CHEM-C121 with a minimum 3.0 grade point average for each course. Preference will be shown to students who demonstrate financial need.

Department of Computer and Information Science
- **Gersting Graduate Student Award** is awarded to an outstanding graduating graduate student in computer and information science.
- **Gersting Undergraduate Student Award** is awarded to an outstanding graduating senior in computer and information science.

Department of Earth Sciences
- **Academic Achievement Award** is awarded to the graduating senior with highest academic achievement.
- **Arthur Mirsky Geology Graduate Scholarship** is awarded to an outstanding master’s degree student.
• Geology Alumni Scholarship is awarded to a senior geology major.
• Indiana Geology and Gem Society Scholarship is awarded to a sophomore or junior geology major.
• Leadership and Service Award is awarded to the graduating senior with outstanding leadership and service to the department.

Environmental Science Program
• Carl H. Johnson Achievement Scholarship memorializes Susan Cornacchione’s father. Inspired by Matt and Susan Cornacchione’s daughter, it supports students working in interdisciplinary fields of applied environmental problems. Preference will be shown to a student who is pursuing a degree in earth or environmental sciences or is succeeding in spite of learning challenges.
• The Center for Earth and Environmental Science (CEES) Engaged Scholar Award supports students working in interdisciplinary fields of applied environmental problems.

Forensic and Investigative Sciences Program
• Academic Achievement Award is given for outstanding achievement, including high grade point average and challenging course enrollment.
• Student Leadership Award is awarded to a student with outstanding leadership and service to the program.

Department of Mathematical Sciences
• Anna K. Suter Outstanding Undergraduate Student Achievement Award is awarded to the outstanding senior mathematics major.
• Anna K. Suter Scholarship is awarded to full-time undergraduate mathematics majors. It is renewable based on academic performance.
• Best Academic Performance by a Graduate Student Award is awarded for exceptional scholastic performance by a beginning graduate student (before Master’s degree is earned or pre-qualifying exams) and an advanced graduate student (post-qualifying exam).
• The Igor Kuznetsov Outstanding Teaching Award by a Graduate Student is awarded for outstanding performance in classroom teaching by a graduate student.
• Outstanding Undergraduate Award is awarded to an outstanding junior or senior (or both) based on achievements in advanced mathematics.
• Yuri Abramovich Memorial Scholarship is awarded to an undergraduate or graduate student who is enrolled in the School of Science and who has a keen interest in the study of mathematics, who demonstrates academic excellence especially in mathematics courses beyond the sophomore level, and who shows promise for a career in mathematics.

Department of Physics
• D. J. Angus-Scientech Award is awarded by the Physics Department to the most improved sophomore or junior student in the physical sciences and engineering.
• The Forrest Meiere Prize for Outstanding Physics Major is awarded to the undergraduate major with the best academic record.
• Outstanding Graduate Student Award is based upon achievements in research and academics.
• The University Physics Award is awarded to the best student in the PHYS 15200/PHYS 25100-course sequence.

Department of Psychology
• Robert I. Long Award recognizes contributions, leadership, and service to other psychology students, the department, or the School of Science.
• Undergraduate Research Award recognizes student contributions to psychological science, particularly with regard to the development and testing of research ideas, the carrying out of research, and the dissemination of scholarly products based on research.
• Bingham Psi Chi Scholarship
• John F. Kremer Undergraduate Mentor Award - Throughout his career, John Kremer believed that peer mentor could have a powerful effect on student success in Introductory Psychology. This award is given to the peer mentor who best exemplifies the characteristics associated with this success: dedication, relentless persistence, creativity, enthusiasm, flexibility, and the ability to connect with all students.
• Outstanding Student Teaching Award recognizes outstanding graduate student teaching assistance for their superior ability to import knowledge of chosen topics to students and to stimulate their desire to master such topics. The award recognizes that teaching extends beyond the classroom and includes activities such as mentoring and motivating students either formally or informally.
• Paul J. McKinley Award recognizes an outstanding doctoral student in the Psychobiology of Addictions program.
• Industrial/Organizational Graduate Psychology Award is awarded to an outstanding master’s student in I/O Psychology.
• Clinical Psychology Award for Research Excellence recognizes a graduate student with outstanding performance in research -- going above and beyond the research requirements of the graduate degree. Indicators of research excellence may include presentations of research, particularly at regional or national conferences, publications, grant applications, and thesis or dissertation projects that are especially innovative or exemplary in theory, design, or execution.
• Clinical Psychology Award for Citizenship recognizes a graduate student with outstanding performance in citizenship service to the department. Citizenship can be exemplified in two key domains: Personal Support and Organizational Support. Personal support includes helping other students, faculty, and staff, being cooperative, treating others with courtesy, and providing encouragement. Organization support is evidenced by positively representing the psychology department, supporting our mission and objectives, following rules and procedures, and suggesting improvements.
• Outstanding Practicum Supervisor Award recognizes exemplary supervision and
training provided to graduate students in clinical psychology who are engaged in clinical practica.

Other Recognition

In addition, many science honor students compete successfully for scholarships awarded by IUPUI. Freshmen with a high level of achievement are eligible for election to the IUPUI chapters of Alpha Lambda Delta and Phi Eta Sigma honorary societies. Psychology majors may be elected to the Psi Chi Honorary, which recognizes outstanding students in that discipline.

Distinguished Faculty and Staff Awards

The School of Science proudly salutes faculty and staff who have distinguished themselves in the areas of teaching, research, service, and academic advising. The following full-time faculty and staff have been chosen by their colleagues and students to receive awards in recognition of their outstanding contributions to the academic mission of the School of Science and the university.

<table>
<thead>
<tr>
<th>Name</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>W. David Laverell</td>
<td>1975</td>
</tr>
<tr>
<td>L. Kent Morrison</td>
<td>1976</td>
</tr>
<tr>
<td>Gordon H. Fricke</td>
<td>1977</td>
</tr>
<tr>
<td>Erwin Boschmann</td>
<td>1978</td>
</tr>
<tr>
<td>Frederick W. Kleinhans</td>
<td>1978</td>
</tr>
<tr>
<td>Terry L. Hall</td>
<td>1979</td>
</tr>
<tr>
<td>Robert D. Hall</td>
<td>1980</td>
</tr>
<tr>
<td>John F. Kremer</td>
<td>1980</td>
</tr>
<tr>
<td>Patricia A. Boaz</td>
<td>1981</td>
</tr>
<tr>
<td>Martin J. O'Donnell</td>
<td>1981</td>
</tr>
<tr>
<td>Forrest T. Meiere</td>
<td>1982</td>
</tr>
<tr>
<td>Peter W. Rabideau</td>
<td>1982</td>
</tr>
<tr>
<td>Frederick C. Thatcher</td>
<td>1982</td>
</tr>
<tr>
<td>Erwin Boschmann</td>
<td>1983</td>
</tr>
<tr>
<td>Robert D. Hall</td>
<td>1983</td>
</tr>
<tr>
<td>David J. Malik</td>
<td>1983</td>
</tr>
<tr>
<td>Martin J. O'Donnell</td>
<td>1983</td>
</tr>
<tr>
<td>Stanley Aeschleman</td>
<td>1984</td>
</tr>
<tr>
<td>Elaine V. Alton</td>
<td>1984</td>
</tr>
<tr>
<td>Patricia A. Boaz</td>
<td>1984</td>
</tr>
<tr>
<td>Marvin D. Kemple</td>
<td>1984</td>
</tr>
<tr>
<td>John F. Kremer</td>
<td>1984</td>
</tr>
<tr>
<td>B. D. Nageswara Rao</td>
<td>1984</td>
</tr>
<tr>
<td>Richard Bodonyi</td>
<td>1985</td>
</tr>
<tr>
<td>Frederick W. Kleinhans</td>
<td>1985</td>
</tr>
<tr>
<td>Arthur Mirsky</td>
<td>1985</td>
</tr>
<tr>
<td>Richard G. Pflanzer</td>
<td>1985</td>
</tr>
<tr>
<td>D. W. Rajecki</td>
<td>1985</td>
</tr>
<tr>
<td>J. Roger Ware</td>
<td>1985</td>
</tr>
<tr>
<td>Shirley A. Bayer</td>
<td>1986</td>
</tr>
<tr>
<td>Joan B. Lauer</td>
<td>1986</td>
</tr>
<tr>
<td>J. Roger Ware</td>
<td>1986</td>
</tr>
<tr>
<td>C. D. Aliprantis</td>
<td>1987</td>
</tr>
<tr>
<td>Owen Burkinshaw</td>
<td>1987</td>
</tr>
<tr>
<td>Judith L. Gersting</td>
<td>1987</td>
</tr>
<tr>
<td>John F. Kremer (two awards)</td>
<td>1987</td>
</tr>
<tr>
<td>Richard R. Patterson</td>
<td>1987</td>
</tr>
<tr>
<td>J. Roger Ware</td>
<td>1987</td>
</tr>
<tr>
<td>Pascal de Caprariis</td>
<td>1988</td>
</tr>
<tr>
<td>Theodore W. Cutshall</td>
<td>1988</td>
</tr>
<tr>
<td>Robert D. Hall</td>
<td>1988</td>
</tr>
<tr>
<td>Charles Schauf</td>
<td>1988</td>
</tr>
<tr>
<td>C. D. Aliprantis</td>
<td>1989</td>
</tr>
<tr>
<td>Rosalie Bandy*</td>
<td>1989</td>
</tr>
<tr>
<td>John M. Gersting</td>
<td>1989</td>
</tr>
<tr>
<td>Florence L. Juillerat</td>
<td>1989</td>
</tr>
<tr>
<td>Raima M. Larter</td>
<td>1989</td>
</tr>
<tr>
<td>Florence L. Juillerat</td>
<td>1990</td>
</tr>
<tr>
<td>Kenneth B. Lipkowitz</td>
<td>1990</td>
</tr>
<tr>
<td>David J. Malik</td>
<td>1990</td>
</tr>
<tr>
<td>Arthur Mirsky</td>
<td>1990</td>
</tr>
<tr>
<td>Gregor M. Novak</td>
<td>1990</td>
</tr>
<tr>
<td>Richard J. Wyma</td>
<td>1990</td>
</tr>
<tr>
<td>Rosalie Bandy*</td>
<td>1991</td>
</tr>
<tr>
<td>Gary R. Bond</td>
<td>1991</td>
</tr>
<tr>
<td>Richard O. McCracken</td>
<td>1991</td>
</tr>
<tr>
<td>Forrest T. Meiere</td>
<td>1991</td>
</tr>
<tr>
<td>Gregor M. Novak</td>
<td>1991</td>
</tr>
<tr>
<td>Gordon H. Fricke</td>
<td>1992</td>
</tr>
<tr>
<td>Florence L. Juillerat (two awards)</td>
<td>1992</td>
</tr>
<tr>
<td>Jerome A. Kaminker</td>
<td>1992</td>
</tr>
<tr>
<td>Kenneth B. Lipkowitz</td>
<td>1992</td>
</tr>
<tr>
<td>Kathryn J. Wilson</td>
<td>1992</td>
</tr>
<tr>
<td>Paul L. Dubin</td>
<td>1993</td>
</tr>
<tr>
<td>Gordon H. Fricke</td>
<td>1993</td>
</tr>
<tr>
<td>Florence L. Juillerat</td>
<td>1993</td>
</tr>
<tr>
<td>John F. Kremer</td>
<td>1993</td>
</tr>
<tr>
<td>David J. Malik</td>
<td>1993</td>
</tr>
<tr>
<td>B. D. Nageswara Rao</td>
<td>1993</td>
</tr>
<tr>
<td>Florence L. Rogers*</td>
<td>1993</td>
</tr>
<tr>
<td>Stephen R. Wassall</td>
<td>1993</td>
</tr>
<tr>
<td>Robert G. Bringle</td>
<td>1994</td>
</tr>
<tr>
<td>Laura J. Jenski</td>
<td>1994</td>
</tr>
<tr>
<td>James M. Murphy</td>
<td>1994</td>
</tr>
<tr>
<td>Kim S. Nguyen*</td>
<td>1994</td>
</tr>
<tr>
<td>Andrew P. Barth</td>
<td>1995</td>
</tr>
<tr>
<td>Robert G. Bringle</td>
<td>1995</td>
</tr>
<tr>
<td>Scott E. Evenbeck</td>
<td>1995</td>
</tr>
<tr>
<td>Florence L. Juillerat</td>
<td>1995</td>
</tr>
<tr>
<td>Laura J. Jenski</td>
<td>1995</td>
</tr>
<tr>
<td>Marvin D. Kemple</td>
<td>1995</td>
</tr>
<tr>
<td>Charmaine Kremer*</td>
<td>1995</td>
</tr>
<tr>
<td>Robert W. Keck</td>
<td>1995</td>
</tr>
<tr>
<td>John F. Kremer</td>
<td>1995</td>
</tr>
<tr>
<td>Raima M. Larter</td>
<td>1995</td>
</tr>
<tr>
<td>Martin J. O'Donnell</td>
<td>1995</td>
</tr>
<tr>
<td>Clifford E. Dykstra</td>
<td>1996</td>
</tr>
<tr>
<td>Robert L. Gluekauf</td>
<td>1996</td>
</tr>
</tbody>
</table>
Joseph E. Kuczkowski 1996
Martin J. O’Donnell 1996
Lenore P. Tedesco 1996
John T. Hazer 1997
Harry L. June 1997
Mathew J. Palakal 1997
Daniel H. Robertson 1997
Jeffrey X. Watt 1997
Marshall C. Yovits 1997
Victor M. H. Borden 1998
Robert G. Bringle (two awards) 1998
Andrew D. Gavrin 1998
Andrew J. Harris 1998
Harry L. June 1998
Joan B. Lauer 1998
Gregor M. Novak 1998
Frank A. Schultz 1998
Wilmer K. File 1999
Kathy E. Johnson 1999
Joseph E. Kuczkowski 1999
Eric C. Long 1999
Joseph L. Thompson* (two awards) 1999
Jeffrey X. Watt 1999
Gary R. Bond 2000
Angel B. Campbell* 2000
Marie C. Chastain* 2000
Andrew D. Gavrin 2000
Charles R. Goodlett 2000
James M. Murphy 2000
Catherine (Kitty) A. Perkins* 2000
Rajeev R. Raja 2000
Sharon Z. Rangazas 2000
James W. Seubert 2000
J. Roger Ware 2000
John J. (Jack) Breen 2001
Robert G. Bringle 2001
Clifford E. Dykstra 2001
Andrew D. Gavrin 2001
Pat Gould* 2001
Bob E. Hall* 2001
Alexander R. Its 2001
Kathleen Marrs 2001
Mark D. Shermis 2001
William H. Stillwell 2001
Joseph L. Thompson* 2001
Robert W. Yost 2001
Drew C. Appleby 2002
Pavel M. Bleher 2002
Michelle R. Boshears* 2002
Robert G. Bringle 2002
Judy E. Carlson 2002
Philip S. Fastenau 2002
Robert D. Hall 2002
David J. Malik 2002
Arthur Mirsky 2002
Robert D. Rigdon 2002
Stanley Sunderwirth 2002
Jeffrey X. Watt 2002
Drew C. Appleby (three awards) 2003
Dawn G. Bauman* 2003
Robert G. Bringle 2003
Clifford E. Dykstra 2003
Connie L. Ely* 2003
Alexander R. Its (three awards) 2003
Elizabeth N. Its 2003
Suzanne K. Merrell* 2003
Michal Misiurewicz 2003
David Nurok 2003
Lenore P. Tedesco 2003
Joseph L. Thompson* 2003
Sidneye T. Trowbridge 2003
J. Roger Ware 2003
Jeffrey X. Watt 2003
Martin Bard 2004
Dring N. Crowell 2004
Sharon L. Fricke 2004
Bart Ng 2004
Robert D. Rigdon 2004
Robert W. Yost 2004
Keith S. Anliker 2005
Bethany S. Neal-Beliveau 2005
Pavel M. Bleher 2005
Robert G. Bringle 2005
Zhe-Yu (Jeff) Ou 2005
Joan P. Rainey* 2005
Lenore P. Tedesco 2005
Jay A. Siegel 2005
Gautam Vemuri 2005
Cynthia C. Williams* 2005
Michelle R. Boshears* 2006
Michal Misiurewicz 2006
Bart S. Ng 2006
Martin J. O'Donnell 2006
Scoot M. Orr 2006
Sidneye T. Trowbridge 2006
Drew C. Appleby (two awards) 2007
Erwin Boschmann 2007
Debbie D. Dailey* 2007
Gabriel M. Filippelli 2007
David J. Malik (two awards) 2007
Judy E. McBride 2007
Marie L. Nguyen* 2007
Martin J. O'Donnell 2007
Scott M. Orr* 2007
Chris W. Thomas 2007
Joseph L. Thompson* 2007
Student Services, Organizations, Scholarships and Awards

Extracurricular Activities

A wide variety of activities are available to School of Science students, both activities sponsored by the School of Science and those open to all students. Students seeking involvement in campus-wide activities, such as the IUPUI Undergraduate Student Government, should contact the Office of Campus and Community Life in the Campus Center, third floor, call (317) 274-3931, or visit www.life.iupui.edu.

Clubs and Organizations in the School of Science

The following activities are of particular interest to students in the School of Science:

Science Undergraduate Student Council and Science Graduate Student Council

These councils, composed of student representatives from each department in the School of Science, advise the dean and the school on matters of concern to students. Each council decides how to allocate the student activity fee to support school projects, departmental and program clubs, and other initiatives.

Departmental Clubs

Most departments and programs within the School of Science sponsor clubs and other activities for majors and interested students. Contact the specific department or program for additional information.

Academic Policies & Procedures

• Academic Regulations
• Academic Standing

Academic Regulations

See the front of the bulletin for general information about grades. The following policies are specific to the School of Science.

Pass/Fail Option During the four years of their undergraduate program, all undergraduates in good standing (with an overall GPA of 2.0 or higher) may enroll in up to eight elective courses to be taken with a grade of P or F. The Pass/Fail option is open for a maximum of two courses per year, including summer sessions. For this option, the year is defined as August 15 to August 15. The Pass/Fail option form is available in School of Science departmental offices and in the School of Science, LD 222.

The course selected for Pass/Fail grading must be an elective. It may not be used to satisfy any of the school area requirements, nor may it be counted as a part of the student’s major. If the course is at the 300-level or higher, with a grade of P, the course may apply to the 32 credit hour School of Science residency requirement. A grade of P cannot be changed subsequently to a grade of A, B, C, or D.

Withdrawal Students may officially withdraw from classes without penalty during the first half of a semester or session if they secure the approval of their advisor; a grade of W (Withdrawal) is recorded on the final grade report. Students may withdraw from classes during the third quarter of a semester or session if they secure the approval of their advisor and the instructor of the course; the instructor may assign a grade of W or F. The grade so assigned is recorded on the final grade report. A student may withdraw from classes during the last quarter of a semester or session only under extraordinary circumstances. In such cases, the student must secure the approval of their advisor, the instructor of the course, and the dean of their school; the instructor may assign a grade of W or F. A written justification from a doctor, member of the clergy, advisor, etc., must be presented indicating that the student could not have withdrawn earlier. The grade so assigned is recorded on the final grade report. The necessary form for withdrawal from a course is available in School of Science departmental offices and in the School of Science, LD 222.

Students who alter their schedules, whether by personal incentive or by departmental directive, must follow correct withdrawal procedures. Students who do not follow these procedures risk jeopardizing their record by incurring a failing grade in a course not properly dropped, or they risk not receiving credit for work done in a course that has not been properly added.

Grade Replacement Policy The Grade Replacement Policy is available only to undergraduate students. It may be exercised for a maximum of 15 credit hours, no more than two times for a given course, with each attempted replacement counting toward the 15 credit hour limit. Any grade may be replaced with the last grade earned for the course, as long as the most recent grade is equal to or higher than the grade being replaced. The replaced grade will then be excluded from the cumulative grade point average. However, the course listing and the replaced grade will remain on the student’s academic record with an “X” notation indicating that the grade is excluded from the cumulative grade point average. The policy became effective beginning with the fall 1996 semester, and any courses being used to replace an earlier grade must have been taken in the fall of 1996 or later. Grades previously granted FX will be honored and will count toward the 15 credit hour limit. Once invoked, a student may not subsequently request reversal of the grade replacement granted for a given course. Also, this policy is not available for graduate students or students seeking any second undergraduate degree. A science major interested in the Grade Replacement Policy should contact the School of Science, LD 222. For more information about the policy, visit http://registrar.iupui.edu/replace.html.
Degree Grade Point Average
The School of Science computes a school grade point average, which is the basis for recommending the awarding of a degree. This grade point average is computed at the completion of the degree program. Only the most recent grade in repeated courses counts in computing the school grade point average for the purpose of graduation. Remedial courses and courses that overlap are also excluded.

Special Credit
Special credit by examination, by credentials, and/or by experience may be awarded in order to help qualified students earn their degrees more quickly. Each instructional department determines which of its courses are available for special credit and establishes procedures to determine student eligibility, administer evaluations for special credit, and grade students. The evaluations are as comprehensive as those given in the course. Credit earned by examination will be assigned an A (highest passing grade) or S (passing grade). Credit earned by credentials and/or experience will be assigned an S. An S (passing) grade is considered to be equivalent to performance at a minimum grade level of C.

Responsibility for initiating a request for special credit in a specific course normally rests with the student. To find out if special credit is warranted, the student should consider meeting first with the department chair, advisor, or course instructor.

For additional information, refer to the front part of this bulletin under "Special Credit."

Auditing Courses
University policy permits the auditing of courses, but audited courses may not be retaken later for academic credit. Written permission from the instructor to audit a class must be obtained before the student attempts to register. See the front of the bulletin for general information about auditing courses.

Review of Final Grade in a Course
A student has the right to request and receive a review of the student’s final grade in a course. However, the request for such a review must be made in a timely manner; that is, within one year of the completion of the course.

Petition for Grade Change

Faculty Petition A faculty member may request a change of grade for a student. This request can be honored only after approval of the department Chairperson and the School of Science Associate Dean for Faculty Affairs and Undergraduate Education.

Student Petition In certain cases, a student may request a change of grade. Students should contact the School of Science, LD 222, for information about procedures and time limits for applicable cases.

Science Scholars List and Dean’s Honor List
The School of Science recognizes exceptional academic performance in baccalaureate and associate degree programs before graduation from the university by periodically publishing the Science Scholars List and the Dean’s Honor List. The Science Scholars List names full-time students (taking 12 or more credit hours) or part-time students (taking at least 5 credit hours) who have completed at least 26 credit hours of course work at IUPUI and who have a semester and cumulative grade point average (GPA) of at least 3.75. The Dean’s Honor List contains the names of the students who have achieved a GPA of 3.5 or higher during a semester in which they carry 12 or more credit hours. Part-time students (taking 5 or more credit hours) who have completed at least 26 credit hours of course work at IUPUI will be included on the Dean’s Honor List if they have a semester and cumulative GPA of 3.5 or higher.

Courses assigned a deferred grade (R) will count toward the 12 credit hour minimum required of full-time students. Courses taken on a Pass/Fail basis will not count toward the 12 credit hour minimum. Students who received an incomplete (I) will not be placed on the Science Scholars List or the Dean’s Honor List. No Science Scholars List or Dean’s Honor List is published for the summer sessions.

Candidates for Baccalaureate Degrees
Students are considered to be candidates in good standing for baccalaureate degrees awarded by the School of Science when they have been admitted as regular students by the Undergraduate Admissions Center, when their last semester’s grade point average is not less than a 2.0, and when their cumulative grade point average is not below this same level.

Double Major
A double major is awarded to students who simultaneously complete the requirements for two Purdue Bachelor of Science degree programs or two Purdue Bachelor of Arts degree programs in the School of Science. Students who plan to double major must have their programs approved by both major departments and the Associate Dean for Academic Affairs. A form to petition for a double major can be obtained from the School of Science, LD 222. A student declaring a double major must satisfy the departmental requirements for the second major as stated in the School of Science bulletin in effect when the second major is approved.

Double Degree
A student may be awarded two degrees by simultaneously completing bachelor’s degree programs from two different schools at IUPUI or by simultaneously completing two baccalaureate major programs from the School of Science, one leading to a Purdue Bachelor of Arts degree and the other leading to a Purdue Bachelor of Science degree, or one leading to a Purdue degree and the other leading to an Indiana University degree. A student who plans to pursue a double degree must receive approval from the two major departments and the academic deans of the schools awarding the degrees. A form to petition for a double degree can be obtained from the School of Science, LD 222. A student who declares a double degree, and who is accepted by a department in the School of Science for the additional degree program, must satisfy the requirements for that program as stated in the School of Science bulletin in effect when the additional degree program is approved.

Change of Major within the School of Science
A student who desires to change majors within the School of Science should petition the School of Science, LD 222. If the petition is approved, the student may be placed under the bulletin in effect during the time of admission into the new major.

Second Baccalaureate Degree
Normally the holder of a bachelor’s degree who wishes to pursue a further educational goal is encouraged to consider a graduate degree program. However, a student interested in pursuing a second degree should apply through the IUPUI Undergraduate Admissions Center,
A student whose semester grade point average (GPA) falls below a 2.0 will be placed on probation. The student may continue studies provided the student achieves a GPA of at least 2.0 for each semester while on probation. Once the cumulative GPA is at least 2.0, the student will be removed from probationary status. A student will be advised of probationary status by letter from the Associate Dean for Academic Affairs.

Dismissal
A student on probation who has completed a minimum of 12 IUPUI grade point average (GPA) hours is subject to dismissal if the student fails to attain a GPA of at least 2.0 in any two consecutive IUPUI semesters (fall and spring), including the semester that the student was first placed on probation.

A student can also be dismissed from the university when, in the opinion of the Associate Dean for Academic Affairs of the School of Science, the student has ceased making progress in the degree program.

Readmission
A student dismissed for the first time must remain out of school at least one regular (fall or spring) semester. During the semester out of school, the student may petition the School of Science for readmission. A student dismissed for the second time must remain out of school at least two regular semesters (fall and spring), but may petition for readmission during the second semester out of school. Readmission after a second dismissal is extremely rare.

In order to allow sufficient time for considering a petition for readmission, a student eligible to submit a petition should do so before June 15 for the fall semester, October 15 for the spring semester, or March 15 for either summer session.

A student readmitted will be so informed by letter from the Associate Dean for Academic Affairs. The letter will indicate any conditions and restrictions affecting readmission and continuance in the degree program.

Faculty Emeriti

- **Burkinshaw, Owen, Professor Emeritus of Chemistry (1972); B.S., 1966, Ohio University; Ph.D., 1972, Purdue University. Specialty: Functional Analysis.**
- **Boschmann, Erwin, Associate Vice President for Distributed Education and Professor Emeritus of Chemistry (1968); B.A., 1963, Bethel College (Kansas); M.S., 1965, Ph.D., 1968, University of Colorado. Specialties: General Chemistry, Inorganic Chemistry, Bioinorganic Chemistry.**
- **Burkinshaw, Owen, Professor Emeritus of Mathematical Sciences, (1972); B.S., 1966, M.S., 1968, Ohio University; Ph.D., 1972, Purdue University. Specialty: Functional Analysis.**
• Cutshall, Theodore W., Associate Professor Emeritus of Chemistry (1961); B.S.Ch.E., 1949, Purdue University; M.S., 1959, Ph.D., 1964, Northwestern University. Specialty: Organic Chemistry.
• Fike, Wilmer K., Professor Emeritus of Chemistry (1971); B.S., 1955, Case Institute of Technology; Ph.D., 1960, The Ohio State University. Specialties: General Chemistry, Organic Chemistry, Biochemistry.
• Fleener, Don E., Associate Professor Emeritus of Psychology (1966); B.S. (Ed), 1949, Indiana Central College; Ph.D., 1967, Indiana University. Specialties: Behavioral Medicine, Clinical Psychology, Developmental Psychology.
• Fortier, Robert H., Associate Professor Emeritus of Psychology (1958); B.S., 1947, Ph.D., 1952, Western Reserve University. Specialties: Child Psychology, Personality.
• Fricke, Gordon H., Associate Dean Emeritus for External Development. School of Science, and Associate Professor Emeritus of Chemistry (1972); B.A., 1964, Goshen College; M.S., 1966, State University of New York at Binghamton; Ph.D., 1970, Clarkson College of Technology. Specialties: General Chemistry, Analytical Chemistry.
• Juillerat, Florence, Associate Professor Emerita of Biology (1966); B.S., 1962, M.S., 1967, Ph.D., 1974, Purdue University. Specialties: Cell Biology, Biology for Teachers, Biology for Nonmajors.
• Keck, Robert William, Professor Emeritus of Biology (1972); B.A., 1962, M.S., 1964, University of Iowa; Ph.D., 1968, The Ohio State University. Specialty: Plant Physiology.
• Kleinhaus, Frederick W., Associate Professor Emeritus of Physics and Adjunct Professor of Earth Sciences (1972); B.S., 1985, University of Michigan; Ph.D., 1971, The Ohio State University. Specialties: Biological Physics, Computational Physics.
• Kuczkowski, Joseph E., Associate Dean Emeritus for Academic Programs and Student Development, School of Science, and Professor Emeritus of Mathematical Sciences (1966); B.S., 1961, Canisius College; M.S., 1963, Ph.D., 1968, Purdue University. Specialties: Semigroup Theory, Mathematics Education, College Student Development.
• Nurok, David, Associate Professor Emeritus of Chemistry (1978); B.Sc., 1959, Ph.D., 1966, University of Cape Town, South Africa. Specialties: Analytical Chemistry, Chromatography.
• Patterson, Richard R., Associate Professor Emeritus of Mathematical Sciences and Associate Professor of Computer and Information Science (1974); B.A., 1961, DePauw University; Ph.D., 1966, University of California, Berkeley. Specialty: Geometric Modeling.
• Pflanzer, Richard Gary, Associate Professor Emeritus of Biology, School of Science, and Associate Professor of Physiology and Biophysics, School of Medicine (1969); A.B., 1964, Ph.D., 1969, Indiana University. Specialty: Medical Physiology.

• Rigdon, Robert, Associate Professor Emeritus of Mathematical Sciences (1975); A.B., 1966, Princeton University; Ph.D., 1970, University of California, Berkeley. Specialty: Algebraic Topology.

• Rothman, Neal J., Professor Emeritus of Mathematical Sciences (1982); B.S., 1951, University of Delaware; M.S., 1954, Tulane University; Ph.D., 1958, Louisiana State University. Specialties: Functional Analysis, Harmonic Analysis.

• Ryting, Marvin, Associate Professor Emeritus of Psychology (1975, IUPU Columbus); B.S., 1971, Brigham Young University; M.S., 1973, Ph.D., 1975, Purdue University. Specialties: Personality Theory, Social Psychology, Human Sexuality.

• Seubert, James W., Associate Professor Emeritus of Physics (1968); A.B., 1958, Washington University; M.S., 1964, Ph.D., 1968, Indiana University. Specialty: Nuclear Physics.

• Stocum, David L., Dean Emeritus of the School of Science and Professor of Biology (1989); B.A., 1961, Susquehanna University; Ph.D., 1968, University of Pennsylvania. Specialties: Developmental Biology, Regenerative Biology.

• Sunderwirth, Stanley G., Professor Emeritus of Chemistry (1988, IUPU Columbus); B.A., 1951, Tarkio College; Ph.D., 1955, The Ohio State University. Specialties: General Chemistry, Organic Chemistry.

• Vasavada, Kashap V., Professor Emeritus of Physics (1970); B.S., 1958, University of Baroda, India; M.S., 1960, University of Delhi, India; Ph.D., 1964, University of Maryland. Specialties: High Energy Physics, Biological Physics.

• Ware, Joseph Roger, Associate Professor Emeritus of Psychology (1972); B.S., 1957, M.S., 1961, University of Louisville; Ph.D., 1972, University of Kentucky. Specialties: Personality Theory, Humanistic Psychology, Group Dynamics, Psychological Type.
of Southern California. Specialties: Petrology, Geochemistry.

• Belecky-Adams, Teri L., Assistant Professor of Biology (2001); B.S., 1985, University of Wyoming; Ph.D., 1994, University of Cincinnati College of Medicine. Specialties: Developmental Biology, Retinal Regeneration.

• Betancourt, Marcos, Assistant Professor of Physics (2004); B.S., 1986, University of Puerto Rico, Mayaguez; M.S., 1988, University of California, San Diego; Ph.D., 1995, University of California, San Diego. Specialties: Theoretical Biophysics, Protein Folding Kinetics.

• Blacklock, Brenda J., Assistant Scientist in Chemistry and Chemical Biology (2005); B.S., 1989, University of Waterloo; Ph.D., 1994, University of Alberta. Specialty: Biochemistry.

• Borden, Victor, M. H., Associate Vice President, University Planning, Institutional Research and Accountability and Professor of Psychology (1992); B.A., 1979, University of Rochester; M.S., 1983, Ph.D., 1987, University of Massachusetts-Amherst. Specialties: Statistical Methods, Secondary Data Analysis, Institutional Performance Indicators, Study Life Research.

• Boyd, Donald, Research Professor of Chemistry and Chemical Biology (1986); B.S., 1963, Pennsylvania State University; Ph.D., 1968, Harvard University. Specialty: Organic Chemistry.

• Brothers, Timothy S., Adjunct Associate Professor of Earth Sciences (1984); B.A., 1978, University of California, Davis; M.A., 1981, Ph.D., 1985, University of California, Los Angeles. Specialties: Biogeography, Human Impacts on Vegetation.

• Buse, Olguta, Assistant Professor of Mathematical Sciences (2005); B.S., 1996, University of Bucharest; Ph.D., 2002, SUNY at Stony Brook. Specialty: Symplectic Geometry, Algebraic Topology.

• Carpentier, Melissa Y., Adjunct Assistant Professor of Psychology (2009); B.A., 2001, Our Lady of the Lake University, San Antonio, Texas, M.S., 2003, Ph.D., 2007, Oklahoma State University. Specialty: Health Psychology.

• Chang, Hua-Chen, Assistant Professor of Biology (2009); B.S., 1991, National Chung Hsing University; M.S., 1996, Ph.D., 2000, Purdue University. Specialty: Immunology.

• Chen, Yue (Jake), Assistant Professor of Computer and Information Science and Informatics (2004); B.S., 1995, Peking University, China; M.S., 1997, Ph.D., 2001, University of Minnesota-Twin Cities. Specialties: Bioinformatics, Data Warehousing, Data Mining.

• Cheng, Ruihua, Assistant Professor of Physics (2005); B.Sc., 1993, Northern Jiaotong University; M.Sc., 1996, Northern Jiaotong University; M.Sc., 2000, University of Nebraska-Lincoln; Ph.D., 2002, University of Nebraska-Lincoln. Specialties: Condensed Matter, Magnetic Nano Structures.

• Chintalacharuvu, Subba, Adjunct Professor in Biology (2002); B.Sc., 1990, Osmania University; Ph.D., 1996, Case Western Reserve University; Eli Lilly & Company Senior Biologist. Specialties: Glyobiology, Immunology.

• Chism, Grady W., III, Adjunct Professor of Biology (2004); Ph.D., 1973, University of Massachusetts. Specialties: Food Science, Biology Teaching.

• Clack, James W., Assistant Professor of Biology (1990, IUPU Columbus); B.A., 1974, Indiana University; Ph.D., 1982, Purdue University. Specialties: Neurobiology, Visual Physiology.

• Cohen, Michael R., Adjunct Professor of Earth Sciences (1968); B.S., 1960, City University of New York; M.A., 1963, Columbia University; M.S.T., 1964, Ph.D., 1968, Cornell University. Specialties: Science and Environmental Education.

• Colquitt, Alan L., Adjunct Associate Professor of Psychology (2009); B.A., 1982, Indiana University; Ph.D., 1986, Wayne State University. Specialty: Industrial/Organizational Psychology.
• Compton, Kathy, Lecturer in Psychology (2001, IUPU Columbus); B.A., 1993, Purdue University; M.S.W., 1996, Indiana University. Specialties: Clinical, Families and Children.

• Contino, Lisa, Senior Lecturer in Psychology (2002); B.A., 1972, Indiana University; M.S., 1975, Ph.D., 2000, Indiana University-Purdue University Indianapolis. Specialties: Clinical Rehabilitation Psychology (child and adolescent), Teaching of Psychology.

• Cyders, Melissa A., Assistant Professor of Psychology (2009); B.A., 2003, The Ohio University; M.S., 2005, Ph.D., 2006, University of Kentucky. Specialty: Clinical Psychology.

• Dai, Guoli, Assistant Professor of Biology (2009); D.V.M., 1984, M.S., 1987, Changchun Veterinary University; Ph.D., 1990, Jilin University. Specialty: Regenerative Biology.

• Decco, Ricardo S., Associate Professor of Physics (2000); M.S., 1988, Universidad Nacional de Cordoba and Instituto Balseiro, Universidad Nacional de Cuyo, Argentina; Ph.D., 1994, Instituto Balseiro, Universidad Nacional de Cuyo, Argentina. Specialties: Condensed Matter, Near-Field Scanning Optical Microscopy (NSOM).

• Deo, Sapna K., Assistant Professor of Chemistry and Chemical Biology (2005); B.S., 1992, University of Bombay, India; B. Pharm. Sci., 1998, University of Bombay; Ph.D., 2000, University of Kentucky. Specialty: Bioanalytical Chemistry.

• Dona, Christopher T., Lecturer in Mathematical Sciences (2007); B.A., 1998, University of Wisconsin-Milwaukee; B.S., 2001, University of Wisconsin-Oshkosh; M.S., 2006, Purdue University at Indianapolis. Specialties: Mathematics Instruction, Curriculum Development.

• Dundar, Murat, Assistant Professor of Computer and Information Science; B.Sc., 1997, Bogazici University, Turkey; M.S., 1999, Ph.D., 2003, Purdue University. Specialties: Machine Learning, Pattern Recognition.

• Engleman, Eric A., Adjunct Assistant Professor of Psychology (2006); B.S., 1984, Indiana University; M.A., 1987, Indiana University Indianapolis; Ph.D., 1992, Indiana University Medical Center. Specialty: Medical Neurobiology.

• Evenbeck, Scott E., Associate Vice Chancellor for Undergraduate Education, Dean of University College, and Professor of Psychology (1972); A.B., 1968, Indiana University; M.A., 1971, Ph.D., 1972, University of North Carolina. Specialties: Social Psychology, Program Evaluation, Methodology.

• Fang, Shiaofen, Chair and Professor of Computer and Information Science (1996); B.S., 1983, M.S., 1986, Zhejiang University, China; Ph.D., 1992, University of Utah. Specialties: Computer Graphics and Visualization.

• Farris, G. Duane, Lecturer in Mathematical Sciences (2005); B.S., 1970, Ball State University; M.S., 1974, Butler University. Specialty: Math Curriculum.

• Felsten, Gary, Associate Professor of Psychology (1993, IUPU Columbus); B.A., 1974, Cornell University; M.S., 1977, Ph.D., 1979, Purdue University. Specialty: Health Psychology.

• Filippelli, Gabriel M., Chair and Associate Professor of Earth Sciences (1994); B.S., 1986, University of California, Davis; Ph.D., 1994, University of California, Santa Cruz. Specialties: Sedimentary Geochemistry, Paleoenvironment, Paleoclimatology.

• Fisher, Timothy G., Adjunct Assistant Professor of Earth Sciences (1996); B.Sc., 1987, University of Alberta; M.Sc., 1989, Queen’s University; Ph.D., 1993, University of Calgary. Specialties: Glacial Geology, Glacial Sedimentology.

• Fokin, Vladimir, Assistant Research Professor of Mathematical Sciences (2002); B.S., 1995, M.S., 1995, Novosibirsk State University, Russia; M.S., 2002, Ph.D., 2005, Purdue University. Specialty: Mathematical Biology.

• Frey, Patrick A., Lecturer in Mathematical Sciences (2006); B.S., 1992, Purdue University; M.S., 2000, Purdue University at Indianapolis. Specialties: Mathematics Education, Content Area Development of Peer Tutors.

• Futrell, David Adjunct Associate Professor (2009); B.S., 1986, Murray State University; Ph.D., 1992, University of Tennessee, Knoxville. Specialty: industrial/Organizational Psychology.

• Gavrin, Andrew D., Chair and Associate Professor of Physics (1995); B.S., 1983, Massachusetts Institute of Technology; M.A., 1986, Ph.D., 1992, The Johns Hopkins University. Specialty: Materials Physics.

• Ge, Haibo, Assistant Professor of Chemistry and Chemical Biology (2009); M.S., 2001, Ph.D., 2006, University of Kansas. Specialty: Organic Chemistry.

• Geller, William, Associate Professor of Mathematical Sciences (1994); A.B., 1982, Harvard University; Ph.D., 1989, University of California, Berkeley. Specialty: Dynamical Systems.

• Ghosh, Samiran, Assistant Professor of Mathematical Sciences (2006); B.Sc., 1997, University of Calcutta, India; M. Comp. Application,
2000, Jadavpur University, India; M.S., 2002, University of Maryland; Ph.D., 2006, University of Connecticut. Specialties: Bioinformatics, Biostatistics.

• Ghosh, Swapan K., Adjunct Associate Professor of Earth Sciences (1988); M.S., 1973, University of Wisconsin, Milwaukee; Ph.D., 1975, Syracuse University. Specialties: Geochemistry, Sedimentology, Environmental Chemistry.

• Goodpaster, John V., Assistant Professor of Chemistry and Chemical Biology (2007); B.A., 1995, Gustavus Adolphus College; M.S., 2000, Ph.D., 2000, Michigan State University. Specialties: Explosives, Canine Detection, Trace Evidence, Chemometrics.

• Grahame, Nicholas J., Associate Professor of Psychology (2005); B.A., 1987, Vassar College; Ph.D., 1992, Binghamton University. Specialty: Behavioral Genetics.

• Haitjema, Hendrick M., Adjunct Associate Professor of Earth Sciences (part-time), School of Science, and Associate Professor of Public and Environmental Affairs, School of Public and Environmental Affairs (1989); M.S., 1976, Delft University of Technology, Netherlands; Ph.D., 1982, University of Minnesota. Specialties: Groundwater Mechanics, Groundwater Flow Modeling, Soil Mechanics.

• Hall, Debra, Senior Lecturer in Mathematical Sciences (2002); B.S., 1978, Lambuth College; M.S., 1980, Tennessee Technological University. Specialty: Statistics Education.

• Harris, Andrew J., Senior Lecturer in Computer and Information Science (1995); B.S., 1990, M.S., 2003, Indiana University-Purdue University Indianapolis. Specialties: General Computing, Multimedia and Game Programming.

• Heiman, Mark L., Adjunct Assistant Professor of Biology (1996); B.A., 1974, University of New Orleans; Ph.D., 1978, Louisiana State University Medical School. Specialties: Physiology, Neuroendocrinology.

• Hicks, Clay A., Lecturer in Mathematical Sciences (2002); B.S., 1995, Northwestern University; M.S., 1999, Purdue University (IPFW). Specialty: Mathematics Education and Statistics.

• Hirsh, Adam T., Assistant Professor of Psychology (2010); B.A., 2001, University of Central Florida; M.S., 2004, Ph.D., 2008, University of Florida. Specialty: Health Psychology.

• Jacinthe, Pierre-Andre, Assistant Professor of Earth Sciences (2004); B.S., 1985, State University of Haiti; M.S., 1991, Ball State University; Ph.D., 1995, Ohio State University. Specialty: Geochemistry.

• Ji, Ronghui, Associate Professor of Mathematical Sciences (1986); B.S., 1982, University of Science and Technology of China, China; Ph.D., 1986, State University of New York at Stony Brook. Specialties: Operator Algebras, K-Theory.

• Joglekar, Yogesh N., Assistant Professor of Physics (2005); M.Sc., 1996, Indian Institute of Technology; Ph.D., 2001, Indiana University. Specialties: Condensed Matter, Noise Spectroscopy.

• Johnson, Kathy E., Chair and Professor of Psychology (1993); B.S., 1987, M.S., 1989, University of Massachusetts-Amherst; Ph.D., 1992, Emory University. Specialty: Cognitive/Developmental Psychology.

• Kareken, David A., Adjunct Assistant Professor of Psychology (1998); B.A., 1986, Miami University; Ph.D., 1992, Hahnemann University. Specialty: Clinical Neuropsychology.

• Kemple, Marvin D., Professor of Physics (1977); B.S., 1964, Purdue University; M.S., 1965, Ph.D., 1971, University of Illinois. Specialties: Magnetic Resonance, Biological Physics.

• Kitchens, Bruce, Associate Professor of Mathematical Sciences (2004); B.A., 1976, B.S., 1976, Emory and Henry College; M.Sc., 1980, Ph.D., 1981, University of North Carolina at Chapel Hill. Specialties: Dynamical Systems, Ergodic Theory.

• Kitt, Nancy A., Lecturer in Mathematical Sciences (2005); B.S., 1977, Ball State University; M.A., 1981, Ball State University. Specialty: Mathematics Education.

• Klimek, Slawomir, Lecturer in Mathematical Sciences (2005); B.S., 1977, Ball State University; M.A., 1981, Ball State University. Specialty: Mathematics Education.

1988, Warsaw University, Poland. Specialties: Mathematical Physics, Noncommutative Geometry.

- Krishnan, Gary, Adjunct Assistant Professor of Biology (1999); B.Sc., 1987, M.Sc., 1989, University of Bombay, India; Ph.D., 1994, Texas A & M University. Specialty: Developmental Biology.

- Lees, Norman Douglas, Chair and Professor of Biology (1973); A.B., 1967, Providence College; Ph.D., 1973, Northwestern University. Specialties: Microbiology, Molecular Biology.

- Li, Jiliang, Assistant Professor of Biology (2006); M.D., 1990, Beijing Medical University; Ph.D., 2000, Kagawa Medical University. Specialty: Cell Biology/Bioengineering.

- Liang, Yao, Associate Professor of Computer and Information Science (2007); Ph.D., 1997, Clemson University. Specialties: Adaptive Network Control/Resource Allocation, Wireless Networks, Network QoS.

- Mahoui, Malika, Adjunct Assistant Professor of Computer and Information Science; B.S., 1990, University of Algiers, Algeria; M.S., 1991, Ph.D., 1995 University of Montpellier, France. Specialties: Data Management and Integration, Bioinformatics.

- Malkova, Anna, Assistant Professor of Biology (2003); M.S., 1986, Ph.D., 1993, St. Petersburg State University. Specialty: Molecular Genetics.

- Marrs, James A., Associate Professor of Biology (2008); B.S., 1984, University of Illinois at Urbana-Champaign; Ph.D., 1991, University of Illinois at Chicago. Specialty: Cell and Developmental Biology.

- Marrs, Kathleen A., Associate Dean for Academic Affairs, School of Science, and Associate Professor of Biology (1998); B.A., 1984, Illinois Wesleyan University; Ph.D., 1990, University of Illinois-Chicago. Specialties: Science Teaching, Plant Molecular Biology.

- McBride, Judy E., Senior Lecturer in Mathematical Sciences (1999); B.A., 1975, M.S., 1979, Indiana State University. Specialty: Mathematics Education.

- McIntyre, John A., Adjunct Professor of Biology (1987); A.B., 1966, Rockford College; Ph.D., 1971, Wake Forest University. Specialties: Immunology, Reproductive Biology.

- McKinzie, David L., Adjunct Assistant Professor of Psychology (1999); B.A., 1989, Purdue University; Ph.D., 1993, Binghamton University. Specialty: Behavioral Neuroscience.

- McLeish, Michael J., Associate Professor of Chemistry and Chemical Biology (2008); B.Sc., 1978, Ph.D., 1984, La Trobe University, Melbourne, Australia. Specialty: Mechanistic Enzymology.

- Meshulam, Susan G., Lecturer in Mathematical Sciences (2002); B.S., 1980, Purdue University (IUPUI); M.S., 1983, Indiana University (IUPUI). Specialty: Mathematics Instruction.

- Minto, Robert E., Associate Professor of Chemistry and Chemical Biology (2005); B.S., 1989, University of Waterloo; Ph.D., 1994, University of California,

- Misiurewicz, Michal, Professor of Mathematical Sciences (1992); M.A., 1971, Ph.D., 1974, Warsaw University, Poland. Specialties: Dynamical Systems, Ergodic Theory.

- Morton, R. Patrick, Professor of Mathematical Sciences (2003); B.A., 1975, University of Arizona; Ph.D., 1979, University of Michigan. Specialties: Number Theory, Algebra, Mathematics Education.

- Morzorati, Sandra L., Adjunct Associate Professor of Psychology (2009); R.N., 1969, St. Francis Hospital School of Nursing; B.A., 1972, Lewis University; Ph.D., Indiana State University. Specialty: Physiology-Neuropsychology.

- Muhoberac, Barry B., Associate Professor of Chemistry and Chemical Biology (1985); B.S., 1972, Louisiana State University; Ph.D., 1978, University of Virginia. Specialties: Biophysical Chemistry, Biospectroscopy.

- Naumann, Christoph A., Associate Professor of Chemistry and Chemical Biology (1999); Diploma, 1990, University of Leipzig, Austria; Ph.D., 1995, Technical University of Munich, Germany. Specialties: Biological Chemistry, Physical Chemistry, Biomaterials.

- Neal-Belveau, Bethany S., Associate Professor of Psychology (1993); B.S., 1980, Purdue University; M.S., 1985, Ph.D., 1987, University of Minnesota. Specialties: Psychopharmacology, Developmental Psychobiology.

- Ng, Bart, Acting Dean, School of Science, and M. L. Bittinger Chair Professor of Mathematical Sciences (1975); B.S., 1968, St. Joseph College; M.S., 1970, Ph.D., 1973, University of Chicago. Specialty: Applied Mathematics.

- O'Donnell, Martin J., Chancellor's Professor of Chemistry and Chemical Biology (1975); B.S., 1968, University of Iowa; Ph.D., 1973, Yale University. Specialty: Organic Chemistry.

- Oh, Kyungsoo, Assistant Professor of Chemistry and Chemical Biology (2005), B.S., 1999, Queen Mary and Westfield College, University of London; Ph.D., 2002, Univ. of Sussex. Specialties: Synthetic Organic and Bioorganic Chemistry.

- Ou, Zhe-Yu (Jeff), Professor of Physics (1992), B.S., 1984, Beijing University, China; M.S., 1986, Ph.D., 1990, University of Rochester. Specialties: Experimental Physics, Quantum Optics.

- Palakal, Mathew J., Associate Dean for Research and Graduate Education in the IU School of Informatics (IUPUI) and Professor of Computer and Information Science (1988); B. Comp. Sci., 1979, M. Comp. Sci., 1983, Ph.D., 1987, Concordia University, Canada. Specialties: Artificial Intelligence, Bioinformatics, Pattern Recognition, Artificial Neural Networks.

- Peng, Hanxiang, Associate Professor of Mathematical Sciences (2008); M.S., 1987, Peking University; Ph.D., 2001, State University of New York at Binghamton. Specialties: Asymptotic Theory, Robust Regression and Data Mining, Modeling of Correlated Binary Data, Survival Analysis.

- Perez, Rodrigo, Assistant Professor of Mathematical Sciences (2005); B.S., 1996, National University, Mexico; Ph.D., 2002, Stony Brook University. Specialties: Complex Dynamics, Geometric Group Theory, Combinatorics.

- Perry, Allen O., Adjunct Professor of Earth Sciences (2001); B.S., 1961, Indiana University; M.S., 1972, Ph.D., 1977, Purdue University. Specialties: Environmental Geology, Engineering Geology, Processing, Mined Land Reclamation.

- Petolino, Joseph F., Adjunct Assistant Professor of Biology (1994); B.A., 1976, M.S., 1978, Rutgers University; Ph.D., 1982, University of Maryland. Specialties: Biotechnology, Plant Genetics.

- Petrasche, Horia I., Assistant Professor of Physics (2005); Physics Diploma, 1992, University of Bucharest, Romania; Ph.D., 1998, Carnegie Mellon University. Specialty: Molecular Interactions within Biomembranes.

- Prezbindowski, Dennis R., Adjunct Associate Professor of Earth Sciences (1991); B.S., 1973, Indiana University; M.S., 1974, Michigan State University; Ph.D., 1981, University of Texas at Austin. Specialties: Environmental Geochemistry, Sedimentology, Hydrogeology, Petroleum Geology.

- Rader, Andrew J., Assistant Professor of Physics (2005); B.S., 1996, University of Houston; M.S., 1998, Michigan State University; Ph.D.,...

- Rand, Kevin L., Assistant Professor of Psychology (2006); B.A., 2000, Northern Kentucky University; M.A., 2002, Ph.D., 2006, University of Kansas. Specialty: Clinical/Health Psychology.

- Randall, Stephen K., Associate Professor of Biology (1990); B.S., 1976, University of Connecticut; Ph.D., 1982, Indiana University. Specialties: Biochemistry, Cell Biology.

- Rao, B. D. Nageswara, Professor of Physics (1978); B.S., 1955, M.S., 1956, Andhra University, India; Ph.D., 1961, Aligarh Muslim University, India. Specialties: Nuclear Magnetic Resonance, Biological Physics.

- Rodd, Zachary A., Adjunct Assistant Professor of Psychology (2009); B.A., Ph.D., State University of New York, Albany. Specialty: Biopsychology.

- Roeder, Roland A.W., Assistant Professor of Mathematical Sciences (2009); B.A., 2000, University of California; Ph.D., 2005, Cornell University.

- Roper, Randall J., Assistant Professor of Biology (2006); B.S., 1995, Brigham Young University; Ph.D., 2001, University of Illinois Urbana-Champaign. Specialty: Genetics.

- Rosenberg, Gary D., Associate Professor of Earth Sciences (1979); B.S., 1966, University of Wisconsin; Ph.D., 1972, University of California, Los Angeles. Specialties: Biomineralization, Evolution, Paleobiology, Historical Geography.

- Rubchinsky, Leonid L., Assistant Professor of Mathematical Sciences (2004); B.S., 1995, University of Nizhny; M.S., 1997, University of California, San Diego; Ph.D., 2000, Institute for Applied Physics, Russian Academy of Science. Specialty: Mathematical Neurosciences.

- Rusu, Dumitru Dan, Assistant Professor of Mathematical Sciences (2005, IUPU Columbus); B.S./M.S., 1983, University of Bucharest, Romania; Ph.D., 2000, University of Guelph, Canada. Specialties: Applied Dynamical Systems, Applied Mathematics.

- Saligoe-Simmel, Jill, Adjunct Professor of Earth Sciences (2001); B.S., 1990, Ball State University; M.S., 1984, Indiana State University; Ph.D., 1997, Oregon State University. Specialties: Resource Geography, Spatial Analysis, and GIS Policy and Planning.

- Salyers, Michelle P., Associate Professor in Psychology (1999); B.S., 1989, Purdue University; M.S., 1996, Ph.D., 1998, Indiana University-Purdue University Indianapolis. Specialties: Psychiatric Rehabilitation, Assertive Community Treatment, PTSD.

- Schild, John H., Adjunct Assistant Professor of Biology (1999); B.S., 1983, M.S., 1988, Case Western Reserve University; Ph.D., 1994, Rice University. Specialties: Sensory Electrophysiology, Computational Neuroscience.

- Schoepp, Darryle D., Adjunct Assistant Professor of Biology (1989); B.S., 1978, North Dakota State University; Ph.D., 1982, West Virginia University. Specialty: Pharmacology.

- Sen, Asok K., Professor of Mathematical Sciences (1981); B.S., 1972, Indian Institute of Technology, India; M.S., 1975, University of Minnesota; Ph.D., 1979, Cornell University. Specialties: Applied Mathematics, Biomedical Signal Processing.

- Shain, Michael P., Adjunct Assistant Professor of Psychology (1986); B.A., 1983, DePaul University;
- Shen, Li, Adjunct Assistant Professor of Computer and Information Science and Assistant Professor of Radiology, Indiana University School of Medicine; B.S., 1993, Xi’an Jiao Tong University; M.S., 1996, Shanghai Jiao Tong University; Ph.D., 2004, Dartmouth College. Specialties: Medical Image Computing, Computational Biology, Bioinformatics.
- Shen, Zhongmin, Chair and Professor of Mathematical Sciences (1992); B.S., 1983, University of Science and Technology of China, China; M.S., 1986, Academia Sinica, China; Ph.D., 1990, State University of New York at Stony Brook. Specialty: Differential Geometry.
- Slayback-Barry, Denise L., Academic Specialist (2009); B.A., 1995, IUPUI; Ph.D., 2001, Purdue University-IUPUI. Specialty: Immunology/Biology Teaching.
- Sloop, Kyle L., Adjunct Assistant Professor of Biology (2004); B.S., 1993, Indiana University; M.S., 1994, Northwestern University; Ph.D., 2001, Purdue University-IUPUI. Specialty: Endocrinology.
- Smith, Charles K. II, Adjunct Assistant Professor of Biology (1994); B.S., 1973, University of Pittsburgh; Ph.D., 1979, University of New Hampshire. Specialty: Animal Science.
- Srou, Edward F., Adjunct Assistant Professor of Biology (1996); B.S., 1979, M.S., 1981, American University of Beirut, Beirut; Ph.D., 1986, University of Illinois. Specialties: Immunology, Virology.
- Stewart, Jesse, Assistant Professor of Psychology (2006); B.S., 1998, University of Illinois; M.S., 2000, Ph.D., 2003, Ohio University. Specialty: Clinical/Health Psychology.
- Sukhatme, Uday P., Executive Vice Chancellor and Dean of the Faculties, IUPUI (2006); Professor of Physics (2006); B.Sc. in Mathematics, 1964, University of Delhi, India; S.B. in Physics, 1966, Sc.D. in Physics, 1971, Massachusetts Institute of Technology. Specialties: High Energy Phenomenology, Supersymmetric Quantum Mechanics.
- Svanum, Soren, Associate Professor of Psychology and Adjunct Associate Professor of Clinical Psychology in Psychiatry, School of Medicine (1976); A.B., 1971, San Francisco State University; M.A., 1973, Ph.D., 1976, University of Montana. Specialties: Clinical Psychology, Alcoholism, Health Care Psychology.
- Tam, Richard Yiu Hang, Associate Professor of Mathematical Sciences (1986); B.S., 1980, University of Alberta, Canada; M.Sc., 1982, Virginia Polytechnic Institute and State University; Ph.D., 1986, Cornell University. Specialty: Applied Mathematics.
- Tarr, Terri A., Adjunct Assistant Professor of Psychology (1994); B.A., 1977, M.A., 1978, Ball State University; Ph.D., 1992, Purdue University. Specialty: Developmental Psychology.
- Tedesco, Lenore P., Associate Professor of Earth Sciences, Director of the Center for Earth and Environmental Science, and Director of the Environmental Science Program (1991); B.A., 1984, Boston University; Ph.D., 1991, University of Miami. Specialties: Sedimentation, Wetlands, Water Resources, Environmental Science Education.
- Ulbright, Corinne, Lecturer in Biology and University College; B.A., 1971, Washington University in St. Louis; M.A., 1972, University of Texas, Austin; Ph.D., 1980, Washington University in St. Louis.
- Varma-Nelson, Pratibha, Executive Director of the Center for Teaching and Learning and Professor of Chemistry and Chemical Biology (2008); B.S., 1970, Poona University, India; Ph.D., 1978, University of Illinois at Chicago. Specialties: Pedagogies in Science, Technology, Engineering and Mathematics (STEM) Disciplines.
- Vemuri, Gautam, Chair and Professor of Physics (1992); B.Sc., 1984, Delhi University, India; M.S., 1986, Brown University; Ph.D., 1990, Georgia Institute of Technology. Specialties: Laser Physics, Nonlinear Optics.
• Vidon, Philippe G.-F., Assistant Professor of Earth Sciences (2004); B.S., 1995, Pierre et Marie Curie University; M.S., 1996, University of Toulon; Ph.D., 2004, York University. Specialty: Hydrology.

• Vlahos, Chris J., Adjunct Assistant Professor of Biology (1999); B.S., 1984, Santa Clara University; M.S., 1984, Ph.D., 1987, University of Michigan. Specialties: Cell Biology, Signal Transduction.

• Wang, Xianzhong, Assistant Professor of Biology and Adjunct Assistant Professor of Earth Sciences (2001); B.A., 1986, Zhejiang University, China; M.S., 1989, Academia Sinica, China; Ph.D., 1999, The Ohio State University. Specialties: Ecology, Plant Physiological Ecology.

• Watson, John C., Associate Professor of Biology (1994); B.S., 1975, Butler University; Ph.D., 1982, Indiana University. Specialties: Plant Physiology, Biochemistry, Molecular Biology.

• Watt, Jeffrey X., Associate Dean for Student Affairs and Outreach, School of Science, and Associate Chair and Associate Professor of Mathematical Sciences (1988); B.S., 1983, Michigan Technological University; M.S., 1986, Purdue University; Ph.D., 1990, Indiana University. Specialty: Mathematics Education.

• Witkin, Jeffrey M., Adjunct Professor of Psychology (2007); B.S., 1975, University of Maryland, College Park; Ph.D., 1979, University of North Carolina, Chapel Hill. Specialty: Neurobiology.

• Witzmann, Frank A., Adjunct Professor in Biology and Professor, School of Medicine, Department of Physiology (2002); B.A., 1976, Defiance College; M.S., 1978, Ball State University; Ph.D., 1981, Marquette University. Specialty: Proteomics.

• Worth, Robert, Adjunct Professor of Mathematical Sciences (2004); B.A., 1963, Butler University; M.D., 1966, Ph.D., 1987, Indiana University; M.S., 2004, Purdue University. Specialty: Mathematical Neuroscience.

• Wu, Huanmei, Adjunct Professor of Computer and Information Science; B.S., 1996, Tsinghua University, China; M.S., 2003, Ph.D., 2005, Northeastern University. Specialties: Health Informatics, Bioinformatics.

• Xia, Yuni, Assistant Professor of Computer and Information Science (2005); B.S., 1996, Huazhong University of Science and Technology; M.S. 2002, Ph.D., 2005 Purdue University. Specialties: Databases, Data Mining.

• Yard, Michael, Lecturer in Biology (2006); B.S., 1985, Purdue University; Ph.D., 2007, Indiana University. Specialties: Anatomy, Neurobiology.

• Yost, Robert W., Senior Lecturer in Biology (1993); B.S., 1973, Lebanon Valley College; Ph.D., 1984, University of Pennsylvania. Specialties: Physiology, Biochemistry.

• Zhou, Feng C., Adjunct Professor of Psychology (2009); B.S., 1975, National Taiwan Normal University; M.Ph., 1982,Ph.D., 1983, Mount Sinai School of Medicine. Specialty: Biopharmacology.

• Zhu, Lin, Lecturer in the Department of Chemistry and Chemical Biology (2006); B.S., 1992, Peking University; Ph.D., 2000, University of Hawaii at Manoa. Specialties: Chemistry Education, Physical Chemistry.

• Zimet, G. D., Adjunct Assistant Professor of Psychology (1994); B.A., 1978, Vassar College; Ph.D., 1985, Duke University. Specialty: Clinical and Health Psychology.

• Zou, Xukai, Associate Professor of Computer and Information Science (2003); B.S., 1983, Zhengzhou University; M.S., 1986, Huazhong University of Science and Technology; Ph.D., 2000, University of

- Zuckerman, Steven H., Adjunct Assistant Professor of Biology (1988); B.S., 1973, New York University; Ph.D., 1977, University of Minnesota. Specialty: Immunology

Administration

Administrative Officers

- BART S. NG, Ph.D., Acting Dean
- KATHLEEN A. MARRS, Ph.D., Associate Dean for Academic Affairs
- JAMES M. MURPHY, Ph.D., Associate Dean for Research and Graduate Education
- JEFFREY X. WATT, Ph.D., Associate Dean for Student Affairs and Outreach

Departmental Chairpersons

- N. DOUGLAS LEES, Ph.D., Department of Biology
- JAY A. SIEGEL, Ph.D., Department of Chemistry and Chemical Biology
- SHIAOFEN FANG, Ph.D., Department of Computer and Information Science
- GABRIEL M. FILIPPELLI, Ph.D., Department of Earth Sciences
- ZHONGMIN SHEN, Ph.D., Department of Mathematical Sciences
- ANDREW D. GAVRIN, Ph.D., Department of Physics
- KATHY E. JOHNSON, Ph.D., Department of Psychology

Program Directors

- N. DOUGLAS LEES, Ph.D., Biotechnology
- LENORE P. TEDESCO, Ph.D., Environmental Science
- JAY A. SIEGEL, Ph.D., Forensic and Investigative Sciences
- KATHLEEN A. MARRS, Ph.D., Interdisciplinary Studies